Bringing genome-wide association findings into clinical use (original) (raw)
Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature467, 832–838 (2010). ArticleCASPubMedPubMed Central Google Scholar
Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med.360, 1696–1698 (2009). ArticleCASPubMed Google Scholar
Jakobsdottir, J., Gorin, M. B., Conley, Y. P., Ferrell, R. E. & Weeks, D. E. Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers. PLoS Genet.5, e1000337 (2009). This is a review of the predictive ability of strongly associated GWAS-defined SNPs in four diseases, demonstrating that high odds ratios (>50) are needed to improve prediction. ArticleCASPubMedPubMed Central Google Scholar
Aschard, H. et al. Inclusion of gene–gene and gene–environment interactions unlikely to dramatically improve risk prediction for complex diseases. Am. J. Hum. Genet.90, 962–972 (2012). ArticleCASPubMedPubMed Central Google Scholar
Manolio, T. A. Genome-wide association studies and disease risk assessment. N. Engl. J. Med.363, 166–176 (2010). ArticleCASPubMed Google Scholar
Lopes, M. C., Zeggini, E. & Panoutsopoulou, K. Do genome-wide association scans have potential for translation? Clin. Chem. Lab. Med.50, 255–260 (2011). PubMed Google Scholar
Evans, J. P., Meslin, E. M., Marteau, T. M. & Caulfield, T. Deflating the genomic bubble. Science331, 861–862 (2011). ArticleCASPubMed Google Scholar
Varmus, H. Ten years on — the human genome and medicine. N. Engl. J. Med.362, 2028–2029 (2010). ArticleCASPubMed Google Scholar
Dulbecco, R. A turning point in cancer research: sequencing the human genome. Science231, 1055–1056 (1986). ArticleCASPubMed Google Scholar
Collins, F. Shattuck lecture: medical and societal consequences of the human genome project. N. Engl. J. Med.341, 28–37 (1999). ArticleCASPubMed Google Scholar
Committee on Quality of Health Care in America, Institute of Medicine. Crossing the Quality Chasm: A New Health System for the 21st Century (National Academy Press, 2001).
Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genet.39, 596–604 (2007). ArticleCASPubMed Google Scholar
Budarf, M. L., Labbé, C., David, G. & Rioux, J. D. GWA studies: rewriting the story of IBD. Trends Genet.25, 137–146 (2009). ArticleCASPubMed Google Scholar
Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature467, 1061–1073 (2010).
Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science337, 64–69 (2012). This is a summary report of rare variation identified in the US National Institutes of Health (NIH) Heart, Lung and Blood Institute Exome Sequencing Project for 15,585 human protein-coding genes in 2,440 individuals of European and African ancestry. ArticleCASPubMedPubMed Central Google Scholar
McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell141, 210–217 (2010). ArticleCASPubMed Google Scholar
Spencer, C., Hechter, E., Vukcevic, D. & Donnelly, P. Quantifying the underestimation of relative risks from genome-wide association studies. PLoS Genet.7, e1001337 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nature Rev. Genet.11, 415–425 (2010). ArticleCASPubMed Google Scholar
Tuzun, E. et al. Fine-scale structural variation of the human genome. Nature Genet.37, 727–732 (2005). ArticleCASPubMed Google Scholar
McCarroll, S. A. Extending genome-wide association studies to copy-number variation. Hum. Mol. Genet.17, R135–R142 (2008). ArticleCASPubMed Google Scholar
Chung, C. C. & Chanock, S. J. Current status of genome-wide association studies in cancer. Hum. Genet.130, 59–78 (2011). ArticlePubMed Google Scholar
Travers, M. E. & McCarthy, M. I. Type 2 diabetes and obesity: genomics and the clinic. Hum. Genet.130, 41–58 (2011). ArticleCASPubMed Google Scholar
Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet.3, e114 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA106, 9362–9367 (2009). An overview of functional annotations for GWAS-defined SNPs in the first 3 years of experience is presented here, and it demonstrates that a high proportion (>80%) of associations fall in non-coding regions. ArticlePubMedPubMed Central Google Scholar
Girirajan, S. et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N. Engl. J. Med.367, 1321–1331 (2012). ArticleCASPubMedPubMed Central Google Scholar
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012). This is the lead paper of 30 coordinated papers describing ENCODE findings of functional DNA sequences related to transcription, transcription factor association, chromatin structure and histone modification.
Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature448, 470–473 (2007). ArticleCASPubMed Google Scholar
Zhang, Y., Moffatt, M. F. & Cookson, W. O. Genetic and genomic approaches to asthma: new insights for the origins. Curr. Opin. Pulm. Med.18, 6–13 (2012). ArticleCASPubMed Google Scholar
Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–1463 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sarin, R., Wu, X. & Abraham, C. Inflammatory disease protective R381Q IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ human T-cell functional responses. Proc. Natl Acad. Sci. USA108, 9560–9565 (2011). ArticlePubMedPubMed Central Google Scholar
Craig, D. W. et al. Assessing and managing risk when sharing aggregate genetic variant data. Nature Rev. Genet.12, 730–736 (2011). ArticleCASPubMed Google Scholar
Kraft, P. et al. Beyond odds ratios — communicating disease risk based on genetic profiles. Nature Rev. Genet.10, 264–269 (2009). ArticleCASPubMed Google Scholar
Cornelis, M. C. et al. Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann. Intern. Med.150, 541–550 (2009). ArticlePubMedPubMed Central Google Scholar
van der Net, J. B., Janssens, A. C., Sijbrands, E. J. & Steyerberg, E. W. Value of genetic profiling for the prediction of coronary heart disease. Am. Heart J.158, 105–110 (2009). ArticlePubMed Google Scholar
Ware J. H. The limitations of risk factors as prognostic tools. N. Engl. J. Med.355, 2615–2617 (2006). ArticleCASPubMed Google Scholar
Kraft, P. & Hunter, D. J. Genetic risk prediction—are we there yet? N. Engl. J. Med.360, 1701–1703 (2009). ArticleCASPubMed Google Scholar
Wray, N. R., Goddard, M. E. & Visscher, P. M. Prediction of individual genetic risk of complex disease. Curr. Opin. Genet. Dev.18, 257–263 (2008). ArticleCASPubMed Google Scholar
Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am. J. Hum. Genet.40, 1–14 (1987). CASPubMedPubMed Central Google Scholar
Polychronakos, C. & Li, Q. Understanding type 1 diabetes through genetics: advances and prospects. Nature Rev. Genet.12, 781–792 (2011). This is a Review of allelic architecture of genetic susceptibility to type 1 diabetes, based on GWASs, fine mapping and functional studies, and the potential for genetic prediction of T1D risk. ArticleCASPubMed Google Scholar
Chatenoud, L., Warncke, K. & Ziegler, A. G. Clinical immunologic interventions for the treatment of type 1 diabetes. Cold Spring Harb. Perspect. Med.2, a007716 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bradfield, J. P. et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet.7, e1002293 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bingley, P. J. Clinical applications of diabetes antibody testing. J. Clin. Endocrinol. Metab.95, 25–33 (2010). ArticleCASPubMed Google Scholar
Gallagher, M. P., Goland, R. S. & Greenbaum, C. J. Making progress: preserving β cells in type 1 diabetes. Ann. NY Acad. Sci.1234, 119–134 (2011). Article Google Scholar
Dunlop, M. G. et al. Cumulative impact of common genetic variants and other risk factors on colorectal cancer risk in 42 103 individuals. Gut62, 871–881 (2013). ArticleCASPubMed Google Scholar
Kathiresan, S. et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N. Engl. J. Med.358, 1240–1249 (2008). ArticleCASPubMed Google Scholar
Shields, B. M. et al. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia53, 2504–2508 (2010). ArticleCASPubMed Google Scholar
Shepherd, M. et al. Predictive genetic testing in maturity-onset diabetes of the young (MODY). Diabet Med.18, 417–421 (2001). ArticleCASPubMed Google Scholar
Owen, K. R. et al. Assessment of high-sensitivity C-reactive protein levels as diagnostic discriminator of maturity-onset diabetes of the young due to HNF1A mutations. Diabetes Care33, 1919–1924 (2010). ArticleCASPubMedPubMed Central Google Scholar
Reiner, A. P. et al. Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 α are associated with C-reactive protein. Am. J. Hum. Genet.82, 1193–1201 (2008). One of two initial GWASs demonstrating association betweenHNF1Aand C-reactive protein levels is presented here. ArticleCASPubMedPubMed Central Google Scholar
Toniatti, C., Demartis, A., Monaci, P., Nicosia, A. & Ciliberto, G. Synergistic _trans_-activation of the human C-reactive protein promoter by transcription factor HNF-1 binding at two distinct sites. EMBO J.9, 4467–4475 (1990). ArticleCASPubMedPubMed Central Google Scholar
Thanabalasingham, G. et al. A large multi-centre European study validates high-sensitivity C-reactive protein (hsCRP) as a clinical biomarker for the diagnosis of diabetes subtypes. Diabetologia54, 2801–2810 (2011). ArticleCASPubMed Google Scholar
Fellay, J. et al. ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature464, 405–408 (2010). This is the first GWAS to demonstrate association betweenITPAand ribavirin-induced anaemia. ArticleCASPubMed Google Scholar
Asselah, T., Pasmant, E. & Lyoumi, S. Unraveling the genetic predisposition of ribavirin-induced anaemia. J. Hepatol.53, 971–973 (2010). ArticleCASPubMed Google Scholar
Thompson, A. J. et al. Variants in the ITPA gene protect against ribavirin-induced hemolytic anemia and decrease the need for ribavirin dose reduction. Gastroenterology139, 1181–1189 (2010). ArticleCASPubMed Google Scholar
Hitomi, Y. et al. Inosine triphosphate protects against ribavirin-induced adenosine triphosphate loss by adenylosuccinate synthase function. Gastroenterology.140, 1314–1321 (2011). This functional study demonstrates that ITP substitutes for GTP for use by human adenylosuccinate synthase, thereby bypassing the ribavirin-induced depletion of GTP and subsequent haemolysis. ArticleCASPubMed Google Scholar
Carroll, M. D., Kit, B. K., Lacher, D. A., Shero, S. T. & Mussolino, M. E. Trends in lipids and lipoproteins in US adults, 1988–2010. JAMA308, 1545–1554 (2012). ArticleCASPubMed Google Scholar
Thompson, P. D., Clarkson, P. & Karas, R. H. Statin-associated myopathy. JAMA289, 1681–1690 (2003). ArticleCASPubMed Google Scholar
Wilke, R. A. et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther.92, 112–117 (2010). This is a review of the impact ofSLCO1B1variants on patient response to statins and consensus guidelines for reducing the risk of simvastatin myopathy in variant carriers. ArticleCAS Google Scholar
Mammen, A. L. & Amato, A. A. Statin myopathy: a review of recent progress. Curr. Opin. Rheumatol.22, 644–650 (2010). ArticleCASPubMed Google Scholar
SEARCH Collaborative Group. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med.359, 789–799 (2008).
Ghatak, A., Faheem, O. & Thompson, P. D. The genetics of statin-induced myopathy. Atherosclerosis210, 337–343 (2010). ArticleCASPubMed Google Scholar
Niemi, M., Pasanen, M. K. & Neuvonen, P. J. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev.63, 157–181 (2011). ArticleCASPubMed Google Scholar
Voora, D. et al. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol54, 1609–1616 (2009). ArticleCASPubMedPubMed Central Google Scholar
Maggo, S. D., Kennedy, M. A. & Clark, D. W. Clinical implications of pharmacogenetic variation on the effects of statins. Drug Saf.34, 1–19 (2011). ArticleCASPubMed Google Scholar
Treviño, L. R. et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J. Clin. Oncol.27, 5972–5978 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ramsey, L. B. et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res.22, 1–8 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kerns, S. L. et al. A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of erectile dysfunction following radiation therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys.85, e21–e28 (2013). ArticleCASPubMed Google Scholar
Malhotra, A. K. et al. Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch. Gen. Psych.69, 904–912 (2012). ArticleCAS Google Scholar
Comen, E. et al. Discriminatory accuracy and potential clinical utility of genomic profiling for breast cancer risk in BRCA-negative women. Breast Cancer Res. Treat.127, 479–487 (2011). ArticleCASPubMed Google Scholar
Nguyen, T. V. & Eisman, J. A. Genetics and the individualized prediction of fracture. Curr. Osteoporos Rep.10, 236–244 (2012). ArticlePubMed Google Scholar
Knowles, J. W. et al. Randomized trial of personal genomics for preventive cardiology: design and challenges. Circ. Cardiovasc. Genet.5, 368–376 (2012). ArticlePubMedPubMed Central Google Scholar
Kao, W. H. et al. Family investigation of nephropathy and diabetes research group. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nature Genet.40, 1185–1192 (2008). ArticleCASPubMed Google Scholar
Tzur, S. et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet.128, 345–350 (2010). ArticleCASPubMedPubMed Central Google Scholar
Guedj, M. et al. A refined molecular taxonomy of breast cancer. Oncogene31, 1196–1206 (2012). ArticleCASPubMed Google Scholar
Nevins, J. R. Pathway-based classification of lung cancer: a strategy to guide therapeutic selection. Proc. Am. Thorac Soc.8, 180–182 (2011). ArticlePubMedPubMed Central Google Scholar
Vermeire, S. Towards a novel molecular classification of IBD. Dig. Dis.30, 425–427 (2012). ArticlePubMed Google Scholar
Troutbeck, R., Al-Qureshi, S. & Guymer, R. H. Therapeutic targeting of the complement system in age-related macular degeneration: a review. Clin. Experiment Ophthalmol.40, 18–26 (2012). ArticlePubMed Google Scholar
Baldwin, R. M. et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res.18, 5099–5109 (2012). ArticleCASPubMedPubMed Central Google Scholar
Park, B. L. et al. Genome-wide association study of aspirin-exacerbated respiratory disease in a Korean population. Hum. Genet.132, 313–321 (2013). ArticleCASPubMed Google Scholar
Manolio, T. A. et al. Implementing genomic medicine in the clinic: the future is here. Genet. Med.15, 258–267 (2013). This is a description of actively implemented genomic medicine programs at multiple US institutions, including common challenges, infrastructure and research needs. It outlines an implementation framework for investigating and introducing similar programmes elsewhere. ArticlePubMedPubMed Central Google Scholar
Crews, K. R., Hicks, J. K., Pui, C. H., Relling, M. V. & Evans, W. E. Pharmacogenomics and individualized medicine: translating science into practice. Clin. Pharmacol. Ther.92, 467–475 (2012). CASPubMed Google Scholar
Manolio, T. A. & Green, E. D. Genomics reaches the clinic: from basic discoveries to clinical impact. Cell147, 14–16 (2011). ArticleCASPubMed Google Scholar