Genomic insights into tuberculosis (original) (raw)
World Health Organization. Global Tuberculosis Control (WHO, 2010).
Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Rev. Mol. Cell Biol.2, 569–577 (2001). ArticleCAS Google Scholar
Russell, D. G. Who puts the tubercle in tuberculosis? Nature Rev. Microbiol.5, 39–47 (2006). ArticleCAS Google Scholar
Kaufmann, S. H. E. How can immunology contribute to the control of tuberculosis? Nature Rev. Immunol.1, 20–30 (2001). ArticleCAS Google Scholar
Parrish, N. M., Dick, J. D. & Bishai, W. R. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol.6, 107–112 (1998). ArticleCASPubMed Google Scholar
Veyrier, F. J., Dufort, A. & Behr, M. A. The rise and fall of the Mycobacterium tuberculosis genome. Trends Microbiol.19, 156–161 (2011). ArticleCASPubMed Google Scholar
Kapur, V., Whittam, T. S. & Musser, J. M. Is Mycobacterium tuberculosis 15,000 years old? J. Infect. Dis.170, 1348–1349 (1994). ArticleCASPubMed Google Scholar
Bates, J. H. & Stead, W. W. The history of tuberculosis as a global epidemic. Med. Clin. North Am.77, 1205–1217 (1993). ArticleCASPubMed Google Scholar
Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393, 537–544 (1998); erratum 396, 190 (1998). This is a groundbreaking report of the first whole-genome sequence forM. tuberculosis. ArticleCASPubMed Google Scholar
Behr, M. A. et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science284, 1520–1523 (1999). ArticleCASPubMed Google Scholar
Gordon, S. V. et al. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol. Microbiol.32, 643–655 (1999). ArticleCASPubMed Google Scholar
Brosch, R. et al. Genomic analysis reveals variation between Mycobacterium tuberculosis H37Rv and the attenuated M. tuberculosis H37Ra strain. Infect. Immun.67, 5768–5774 (1999). CASPubMedPubMed Central Google Scholar
Brosch, R. et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA99, 3684–3689 (2002). This analysis of genomic deletions reveals thatM. bovisand related animal-adapted ecotypes are probably derived from human-adaptedM. tuberculosis, which reverses the prevailing view thatM. tuberculosisis a zoonosis derived from domesticated animals. ArticleCASPubMedPubMed Central Google Scholar
Mostowy, S. & Behr, M. A. The origin and evolution of Mycobacterium tuberculosis. Clin. Chest Med.26, 207–216 (2005). ArticlePubMed Google Scholar
van Soolingen, D. et al. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, Canetti: characterization of an exceptional isolate from Africa. Int. J. Syst. Bacteriol.47, 1236–1245 (1997). ArticleCASPubMed Google Scholar
Koeck, J. L. et al. Clinical characteristics of the smooth tubercle bacilli 'Mycobacterium canettii' infection suggest the existence of an environmental reservoir. Clin. Microbiol. Infect.17, 1013–1019 (2011). ArticlePubMed Google Scholar
Fabre, M. et al. Molecular characteristics of “_Mycobacterium canettii_” the smooth Mycobacterium tuberculosis bacilli. Infect. Genet. Evol.10, 1165–1173 (2010). ArticleCASPubMed Google Scholar
Gutierrez, M. C. et al. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog.1, e5 (2005). This is the first report to indicate that STBs are an early branching lineage of the MTBC, which leads to the controversial suggestion that human tuberculosis-causing mycobacteria may have evolved up to 2.8 million years ago. ArticleCASPubMedPubMed Central Google Scholar
Supply, P. et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nature Genet.45, 172–179 (2013). ArticleCASPubMed Google Scholar
Gagneux, S. Genetic diversity in Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol.374, 1–25 (2013). PubMed Google Scholar
Biet, F. et al. Inter- and intra-subtype genotypic differences that differentiate Mycobacterium avium subspecies paratuberculosis strains. BMC Microbiol.12, 264 (2012). ArticleCASPubMedPubMed Central Google Scholar
Turenne, C. Y., Collins, D. M., Alexander, D. C. & Behr, M. A. Mycobacterium avium subsp. paratuberculosis and M. avium subsp. avium are independently evolved pathogenic clones of a much broader group of M. avium organisms. J. Bacteriol.190, 2479–2487 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sreevatsan, S. et al. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl Acad. Sci. USA94, 9869–9874 (1997). ArticleCASPubMedPubMed Central Google Scholar
Musser, J. M., Amin, A. & Ramaswamy, S. Negligible genetic diversity of Mycobacterium tuberculosis host immune system protein targets: evidence of limited selective pressure. Genetics155, 7–16 (2000). CASPubMedPubMed Central Google Scholar
Comas, I. et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nature Genet.42, 498–503 (2010). This study analyses whole-genome sequences from 21M. tuberculosisstrains and reveals that T cell antigens are as conserved as essential genes. These results suggest thatM. tuberculosisantigens may have evolved to specifically interact with the human immune system. ArticleCASPubMed Google Scholar
Comas, I. et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature Genet.45, 1176–1182 (2013). This analysis of genome sequences from 259 MTBC strains has provided the most complete phylogeny ofM. tuberculosisso far and supports a detailed scenario of the origins of human tuberculosis. ArticleCASPubMed Google Scholar
Coscolla, M. & Gagneux, S. Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov. Today Dis. Mech.7, e43–e59 (2010). ArticleCASPubMedPubMed Central Google Scholar
Brudey, K. et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol.6, 23 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mathema, B., Kurepina, N. E., Bifani, P. J. & Kreiswirth, B. N. Molecular epidemiology of tuberculosis: current insights. Clin. Microbiol. Rev.19, 658–685 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hershberg, R. et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol.6, e311 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mostowy, S., Cousins, D., Brinkman, J., Aranaz, A. & Behr, M. A. Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J. Infect. Dis.186, 74–80 (2002). ArticleCASPubMed Google Scholar
Gagneux, S. & Small, P. M. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis.7, 328–337 (2007). ArticlePubMed Google Scholar
Gagneux, S. et al. Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA103, 2869–2873 (2006). ArticleCASPubMedPubMed Central Google Scholar
Behr, M. A. Mycobacterium du jour: what's on tomorrow's menu? Microbes Infect.10, 968–972 (2008). ArticleCASPubMed Google Scholar
Firdessa, R. et al. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg. Infect. Dis.19, 460–463 (2013). ArticlePubMedPubMed Central Google Scholar
Prodinger, W. M. et al. Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping. J. Clin. Microbiol.43, 4984–4992 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cousins, D. V. et al. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int. J. Syst. Evol. Microbiol.53, 1305–1314 (2003). ArticleCASPubMed Google Scholar
Pepperell, C. S. et al. The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog.9, e1003543 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cousins, D. V., Peet, R. L., Gaynor, W. T., Williams, S. N. & Gow, B. L. Tuberculosis in imported hyrax (Procavia capensis) caused by an unusual variant belonging to the Mycobacterium tuberculosis complex. Vet. Microbiol.42, 135–145 (1994). ArticleCASPubMed Google Scholar
Alexander, K. A. et al. Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg. Infect. Dis.16, 1296–1299 (2010). ArticlePubMedPubMed Central Google Scholar
Udwadia, Z. & Vendoti, D. Totally drug-resistant tuberculosis (TDR-tuberculosis) in India: every dark cloud has a silver lining. J. Epidemiol. Commun. Health67, 471–472 (2013). Article Google Scholar
Migliori, G. B., De Iaco, G., Besozzi, G., Centis, R. & Cirillo, D. M. First tuberculosis cases in Italy resistant to all tested drugs. Euro Surveill12, E070517.1 (2007). CASPubMed Google Scholar
Klopper, M. et al. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg. Infect. Dis.19, 449–455 (2013). ArticlePubMedPubMed Central Google Scholar
Velayati, A. A. et al. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest136, 420–425 (2009). ArticlePubMed Google Scholar
Ohno, S. Evolution by Gene Duplication (Springer-Verlag, 1970). Book Google Scholar
Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nature Rev. Microbiol.7, 578–588 (2009). ArticleCAS Google Scholar
Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature405, 299–304 (2000). ArticleCASPubMed Google Scholar
Boucher, Y. et al. Lateral gene transfer and the origins of prokaryotic groups. Annu. Rev. Genet.37, 283–328 (2003). ArticleCASPubMed Google Scholar
Kinsella, R. J., Fitzpatrick, D. A., Creevey, C. J. & McInerney, J. O. Fatty acid biosynthesis in Mycobacterium tuberculosis: lateral gene transfer, adaptive evolution, and gene duplication. Proc. Natl Acad. Sci. USA100, 10320–10325 (2003). ArticleCASPubMedPubMed Central Google Scholar
Jang, J., Becq, J., Gicquel, B., Deschavanne, P. & Neyrolles, O. Horizontally acquired genomic islands in the tubercle bacilli. Trends Microbiol.16, 303–308 (2008). ArticleCASPubMed Google Scholar
Becq, J. et al. Contribution of horizontally acquired genomic islands to the evolution of the tubercle bacilli. Mol. Biol. Evol.24, 1861–1871 (2007). ArticleCASPubMed Google Scholar
Stinear, T. P. et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res.18, 729–741 (2008). ArticleCASPubMedPubMed Central Google Scholar
Veyrier, F. J., Dufort, A. & Behr, M. A. The rise and fall of the Mycobacterium tuberculosis genome. Trends Microbiol.19, 156–161 (2011). ArticleCASPubMed Google Scholar
Supply, P. et al. Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol. Microbiol.47, 529–538 (2003). ArticleCASPubMed Google Scholar
Hirsh, A. E., Tsolaki, A. G., DeRiemer, K., Feldman, M. W. & Small, P. M. Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc. Natl Acad. Sci. USA101, 4871–4876 (2004). ArticleCASPubMedPubMed Central Google Scholar
Namouchi, A., Didelot, X., Schock, U., Gicquel, B. & Rocha, E. P. After the bottleneck: genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res.22, 721–734 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tsolaki, A. G. et al. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc. Natl Acad. Sci. USA101, 4865–4870 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ho, T. B., Robertson, B. D., Taylor, G. M., Shaw, R. J. & Young, D. B. Comparison of Mycobacterium tuberculosis genomes reveals frequent deletions in a 20 kb variable region in clinical isolates. Yeast17, 272–282 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sampson, S. L., Richardson, M., Van Helden, P. D. & Warren, R. M. IS6110-mediated deletion polymorphism in isogenic strains of Mycobacterium tuberculosis. J. Clin. Microbiol.42, 895–898 (2004). ArticleCASPubMedPubMed Central Google Scholar
Sampson, S. L. et al. IS6110-mediated deletion polymorphism in the direct repeat region of clinical isolates of Mycobacterium tuberculosis. J. Bacteriol.185, 2856–2866 (2003). ArticleCASPubMedPubMed Central Google Scholar
Alexander, D. C., Turenne, C. Y. & Behr, M. A. Insertion and deletion events that define the pathogen Mycobacterium avium subsp. paratuberculosis. J. Bacteriol.191, 1018–1025 (2009). ArticleCASPubMed Google Scholar
Domenech, P., Kolly, G. S., Leon-Solis, L., Fallow, A. & Reed, M. B. Massive gene duplication event among clinical isolates of the Mycobacterium tuberculosis W/Beijing family. J. Bacteriol.192, 4562–4570 (2010). ArticleCASPubMedPubMed Central Google Scholar
Weiner, B. et al. Independent large scale duplications in multiple M. tuberculosis lineages overlapping the same genomic region. PLoS ONE7, e26038 (2012). ArticleCASPubMedPubMed Central Google Scholar
McDonough, M. A. & Butterton, J. R. Spontaneous tandem amplification and deletion of the shiga toxin operon in Shigella dysenteriae 1. Mol. Microbiol.34, 1058–1069 (1999). ArticleCASPubMed Google Scholar
Bennett, P. M. Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Methods Mol. Biol.266, 71–113 (2004). CASPubMed Google Scholar
Ford, C. B. et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nature Genet.43, 482–486 (2011). This WGS analysis ofM. tuberculosisErdman strains that have been recovered from infected cynomolgus macaques was used to estimate the mutation rate ofM. tuberculosis in vivo. Surprisingly, the results suggest that the mutation rates are similar during active and latent disease. ArticleCASPubMed Google Scholar
Ford, C. B. et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nature Genet.45, 784–790 (2013). This paper shows thatM. tuberculosisstrains from lineage 2 have a higher mutation rate and thus acquire drug resistance more rapidly than strains from lineage 4. ArticleCASPubMed Google Scholar
McGrath, M., Gey van Pittius, N. C., van Helden, P. D., Warren, R. M. & Warner, D. F. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother.69, 292–302 (2013). ArticleCASPubMed Google Scholar
Gill, W. P. et al. A replication clock for Mycobacterium tuberculosis. Nature Med.15, 211–214 (2009). ArticleCASPubMed Google Scholar
Munoz-Elias, E. J. et al. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect. Immun.73, 546–551 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cohen, N. R., Lobritz, M. A. & Collins, J. J. Microbial persistence and the road to drug resistance. Cell Host Microbe13, 632–642 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kohanski, M. A., DePristo, M. A. & Collins, J. J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell37, 311–320 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dwyer, D. J., Kohanski, M. A. & Collins, J. J. Role of reactive oxygen species in antibiotic action and resistance. Curr. Opin. Microbiol.12, 482–489 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ioerger, T. R. et al. Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE4, e7778 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ioerger, T. R. et al. The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Genomics11, 670 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mariam, S. H., Werngren, J., Aronsson, J., Hoffner, S. & Andersson, D. I. Dynamics of antibiotic resistant Mycobacterium tuberculosis during long-term infection and antibiotic treatment. PLoS ONE6, e21147 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sun, G. et al. Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients. J. Infect. Dis.206, 1724–1733 (2012). This WGS study of the bacterial population from serial samples from three patients during the acquisition of drug resistance reveals that different resistance mutations can independently arise multiple times in an individual patient. ArticleCASPubMedPubMed Central Google Scholar
Fortune, S. M. The surprising diversity of Mycobacterium tuberculosis: change you can believe in. J. Infect. Dis.206, 1642–1644 (2012). ArticlePubMed Google Scholar
Nachega, J. B. & Chaisson, R. E. Tuberculosis drug resistance: a global threat. Clin. Infect. Dis.36, S24–S30 (2003). Article Google Scholar
Cirz, R. T. & Romesberg, F. E. Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria. Antimicrob. Agents Chemother.50, 220–225 (2006). ArticleCASPubMedPubMed Central Google Scholar
Boshoff, H. I., Reed, M. B., Barry, C. E., 3rd & Mizrahi, V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell113, 183–193 (2003). ArticleCASPubMed Google Scholar
Drobniewski, F. et al. Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA293, 2726–2731 (2005). ArticleCASPubMed Google Scholar
Johnson, R. et al. Drug-resistant tuberculosis epidemic in the Western Cape driven by a virulent Beijing genotype strain. Int. J. Tuberc Lung Dis.14, 119–121 (2010). CASPubMed Google Scholar
Cohen-Bacrie, S. et al. Imported extensively drug-resistant Mycobacterium tuberculosis Beijing genotype, Marseilles, France, 2011. Euro Surveill16, 19846 (2011). PubMed Google Scholar
Kubica, T. et al. The Beijing genotype is a major cause of drug-resistant tuberculosis in Kazakhstan. Int. J. Tuberc Lung Dis.9, 646–653 (2005). CASPubMed Google Scholar
Mestre, O. et al. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair. PLoS ONE6, e16020 (2011). ArticleCASPubMedPubMed Central Google Scholar
Muller, B., Borrell, S., Rose, G. & Gagneux, S. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet.29, 160–169 (2013). ArticleCASPubMed Google Scholar
Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science312, 1944–1946 (2006). This paper shows that clinically derived drug-resistant strains most frequently harbour mutations with small or no fitness cost. This contrasts with laboratory-derived resistant strains, the mutations in which frequently affect competitive fitness. ArticleCASPubMed Google Scholar
Billington, O. J., McHugh, T. D. & Gillespie, S. H. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob. Agents Chemother.43, 1866–1869 (1999). ArticleCASPubMedPubMed Central Google Scholar
Davies, A. P. et al. Comparison of fitness of two isolates of Mycobacterium tuberculosis, one of which had developed multi-drug resistance during the course of treatment. J. Infect.41, 184–187 (2000). ArticleCASPubMed Google Scholar
Pym, A. S., Saint-Joanis, B. & Cole, S. T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun.70, 4955–4960 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sander, P. et al. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother.46, 1204–1211 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bottger, E. C., Springer, B., Pletschette, M. & Sander, P. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nature Med.4, 1343–1344 (1998). ArticleCASPubMed Google Scholar
Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nature Genet.44, 106–110 (2011). ArticleCASPubMed Google Scholar
de Vos, M. et al. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother.57, 827–832 (2013). ArticleCASPubMedPubMed Central Google Scholar
Galagan, J. E. et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature499, 178–183 (2013). This study presents a comprehensive mapping of theM. tuberculosisregulatory network, which suggests complex regulatory links between processes that are required for adaptations to the host environment. The results also provide the most complete map of transcription factor binding for any bacterium so far and indicate that transcription factor interactions are more diverse than previously thought. ArticleCASPubMedPubMed Central Google Scholar
Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods4, 651–657 (2007). ArticleCASPubMed Google Scholar
Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science316, 1497–1502 (2007). ArticleCASPubMed Google Scholar
Galagan, J., Lyubetskaya, A. & Gomes, A. ChIP–seq and the complexity of bacterial transcriptional regulation. Curr. Top. Microbiol. Immunol.363, 43–68 (2013). CASPubMed Google Scholar
Jaini, S. et al. Molecular Genetics of Mycobacteria 2nd edn (eds Hatfull, G. & Jacobs, W. R. Jr.) (ASM Press, in the press).
Farnham, P. J. Insights from genomic profiling of transcription factors. Nature Rev. Genet.10, 605–616 (2009). ArticleCASPubMed Google Scholar
Ideker, T. & Sharan, R. Protein networks in disease. Genome Res.18, 644 (2013). ArticleCAS Google Scholar
Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet.8, 450–461 (2007). ArticleCASPubMed Google Scholar
Guelzim, N., Bottani, S., Bourgine, P. & Kepes, F. Topological and causal structure of the yeast transcriptional regulatory network. Nature Genet.31, 60–63 (2002). ArticleCASPubMed Google Scholar
Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits (Chapman and Hall/CRC, 2006). Google Scholar
Bennett, M. R. & Hasty, J. Microfluidic devices for measuring gene network dynamics in single cells. Nature Rev. Genet.10, 628–638 (2009). ArticleCASPubMed Google Scholar
Wakamoto, Y. et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science339, 91–95 (2013). ArticleCASPubMed Google Scholar
Singh, A. et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog.5, e1000545 (2009). ArticleCASPubMedPubMed Central Google Scholar
Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med.198, 693–704 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rohde, K., Yates, R. M., Purdy, G. E. & Russell, D. G. Mycobacterium tuberculosis and the environment within the phagosome. Immunol. Rev.219, 37–54 (2007). ArticleCASPubMed Google Scholar
Yang, X., Nesbitt, N. M., Dubnau, E., Smith, I. & Sampson, N. S. Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry48, 3819–3821 (2009). ArticleCASPubMed Google Scholar
Kendall, S. L. et al. Cholesterol utilization in mycobacteria is controlled by two TetR-type transcriptional regulators: kstR and kstR2. Microbiology156, 1362–1371 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kendall, S. L. et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol.65, 684–699 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nesbitt, N. M. et al. A thiolase of Mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect. Immun.78, 275–282 (2010). ArticleCASPubMed Google Scholar
Uhia, I., Galan, B., Medrano, F. J. & Garcia, J. L. Characterization of the KstR-dependent promoter of the first step of cholesterol degradative pathway in Mycobacterium smegmatis. Microbiology157, 2670–2680 (2011). ArticleCASPubMed Google Scholar
Munoz-Elias, E. J. & McKinney, J. D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nature Med.11, 638–644 (2005). ArticleCASPubMed Google Scholar
Daniel, J., Maamar, H., Deb, C., Sirakova, T. D. & Kolattukudy, P. E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog.7, e1002093 (2011). ArticleCASPubMedPubMed Central Google Scholar
Low, K. L. et al. Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette–Guerin. J. Bacteriol.191, 5037–5043 (2009). ArticleCASPubMedPubMed Central Google Scholar
Peyron, P. et al. Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog.4, e1000204 (2008). This paper shows that oxygenated mycolic acids fromM. tuberculosisare sufficient to induce the differentiation of macrophages into foamy macrophages, which contain lipid bodies that have been shown to be accessible toM. tuberculosisas a potential nutrient source. ArticleCASPubMedPubMed Central Google Scholar
Russell, D. G., Cardona, P. J., Kim, M. J., Allain, S. & Altare, F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunol.10, 943–948 (2009). ArticleCAS Google Scholar
Singh, A. et al. Mycobacterium tuberculosis WhiB3 responds to O2 and nitric oxide via its [4Fe–4S] cluster and is essential for nutrient starvation survival. Proc. Natl Acad. Sci. USA104, 11562–11567 (2007). ArticleCASPubMedPubMed Central Google Scholar
Russell, D. G. The evolutionary pressures that have molded Mycobacterium tuberculosis into an infectious adjuvant. Curr. Opin. Microbiol.16, 78–84 (2013). ArticlePubMedPubMed Central Google Scholar
Pawlowski, A., Jansson, M., Skold, M., Rottenberg, M. E. & Kallenius, G. Tuberculosis and HIV co-infection. PLoS Pathog.8, e1002464 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dooley, K. E. & Chaisson, R. E. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect. Dis.9, 737–746 (2009). ArticlePubMedPubMed Central Google Scholar
Brothwell, D. R. & Sandison, A. T. Diseases in Antiquity: a Survey of the Diseases, Injuries, and Surgery of Early Populations (C. C. Thomas, 1967). Google Scholar
Prasad, P. V. General medicine in Atharvaveda with special reference to Yaksma (consumption/tuberculosis). Bull. Indian Inst. Hist. Med. Hyderabad32, 1–14 (2002). CASPubMed Google Scholar
Daniel, V. S. & Daniel, T. M. Old Testament biblical references to tuberculosis. Clin. Infect. Dis.29, 1557–1558 (1999). ArticleCASPubMed Google Scholar
Roberts, C. A. & Buikstra, J. E. The Bioarchaeology of Tuberculosis: a Global View on a Reemerging Disease (Univ. Press of Florida, 2008). Google Scholar
Donoghue, H. D. et al. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect. Dis.4, 584–592 (2004). ArticleCASPubMed Google Scholar
Zink, A. et al. Molecular history of tuberculosis from ancient mummies and skeletons. Int. J. Osteoarchaeol.17, 380 (2007). Article Google Scholar
Bouwman, A. S. et al. Genotype of a historic strain of Mycobacterium tuberculosis. Proc. Natl Acad. Sci.109, 18511–18516 (2012). ArticlePubMedPubMed Central Google Scholar
Zimmerman, M. R. Pulmonary and osseous tuberculosis in an Egyptian mummy. Bull. N. Y. Acad. Med.55, 604–608 (1979). CASPubMedPubMed Central Google Scholar
Crubezy, E. et al. Identification of Mycobacterium DNA in an Egyptian Pott's disease of 5,400 years old. C. R. Acad. Sci. III321, 941–951 (1998). ArticleCASPubMed Google Scholar
Zink, A., Haas, C. J., Reischl, U., Szeimies, U. & Nerlich, A. G. Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J. Med. Microbiol.50, 355–366 (2001). ArticleCASPubMed Google Scholar
Zink, A. R., Grabner, W., Reischl, U., Wolf, H. & Nerlich, A. G. Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt. Epidemiol. Infect.130, 239–249 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zink, A. R. et al. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J. Clin. Microbiol.41, 359–367 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nerlich, A. G. & Losch, S. Paleopathology of human tuberculosis and the potential role of climate. Interdiscip Perspect. Infect. Dis.2009, 437187 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nicklisch, N. et al. Rib lesions in skeletons from early neolithic sites in Central Germany: on the trail of tuberculosis at the onset of agriculture. Am. J. Phys. Anthropol.149, 391–404 (2012). ArticlePubMed Google Scholar
Formicola, V., Milanesi, Q. & Scarsini, C. Evidence of spinal tuberculosis at the beginning of the fourth millennium BC from Arene Candide cave (Liguria, Italy). Am. J. Phys. Anthropol.72, 1–6 (1987). ArticleCASPubMed Google Scholar
Sager, P., Schalimtzer, M. & Moller-Christensen, V. A case of spondylitis tuberculosa in the Danish Neolithic Age. Dan Med. Bull.19, 176–180 (1972). CASPubMed Google Scholar
Fusegawa, H. et al. Outbreak of tuberculosis in a 2000-year-old Chinese population. Kansenshogaku Zasshi77, 146–149 (2003). ArticlePubMed Google Scholar
Hershkovitz, I. et al. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS ONE3, e3426 (2008). ArticleCASPubMedPubMed Central Google Scholar
Klaus, H. et al. Tuberculosis on the north coast of Peru: skeletal and molecular paleopathology of late pre-Hispanic and postcontact mycobacterial disease. J. Archaeol. Sci.37, 2587 (2010). Article Google Scholar
Salo, W. L., Aufderheide, A. C., Buikstra, J. & Holcomb, T. A. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc. Natl Acad. Sci. USA91, 2091–2094 (1994). ArticleCASPubMedPubMed Central Google Scholar
Arriaza, B. T., Salo, W., Aufderheide, A. C. & Holcomb, T. A. Pre-Columbian tuberculosis in northern Chile: molecular and skeletal evidence. Am. J. Phys. Anthropol.98, 37–45 (1995). ArticleCASPubMed Google Scholar
Rothschild, B. M. & Martin, L. D. Did ice-age bovids spread tuberculosis? Naturwissenschaften93, 565–569 (2006). ArticleCASPubMed Google Scholar
Rothschild, B. M. & Laub, R. Hyperdisease in the late Pleistocene: validation of an early 20th century hypothesis. Naturwissenschaften93, 557–564 (2006). ArticleCASPubMed Google Scholar
Borgdorff, M. W. & van Soolingen, D. The re-emergence of tuberculosis: what have we learnt from molecular epidemiology? Clin. Microbiol. Infect.19, 889–901 (2013). ArticleCASPubMed Google Scholar
Gori, A. et al. Comparison between spoligotyping and IS6110 restriction fragment length polymorphisms in molecular genotyping analysis of Mycobacterium tuberculosis strains. Mol. Cell Probes19, 236–244 (2005). ArticleCASPubMed Google Scholar
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science315, 1709–1712 (2007). ArticleCASPubMed Google Scholar
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science322, 1843–1845 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schurch, A. C. & van Soolingen, D. DNA fingerprinting of Mycobacterium tuberculosis: from phage typing to whole-genome sequencing. Infect. Genet. Evol.12, 602–609 (2012). ArticleCASPubMed Google Scholar
McAdam, R. A. et al. Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the IS3 family. Mol. Microbiol.4, 1607–1613 (1990). ArticleCASPubMed Google Scholar
Coros, A., DeConno, E. & Derbyshire, K. M. IS6110, a Mycobacterium tuberculosis complex-specific insertion sequence, is also present in the genome of Mycobacterium smegmatis, suggestive of lateral gene transfer among mycobacterial species. J. Bacteriol.190, 3408–3410 (2008). ArticleCASPubMedPubMed Central Google Scholar
Supply, P. et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol.44, 4498–4510 (2006). ArticleCASPubMedPubMed Central Google Scholar
Djelouadji, Z., Arnold, C., Gharbia, S., Raoult, D. & Drancourt, M. Multispacer sequence typing for Mycobacterium tuberculosis genotyping. PLoS ONE3, e2433 (2008). ArticleCASPubMedPubMed Central Google Scholar
Maccallum, I. et al. ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biol.10, R103 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zerbino, D. R. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinformatics31, 11.5.1–11.5.12 (2010). Google Scholar
Denisov, G. et al. Consensus generation and variant detection by Celera Assembler. Bioinformatics24, 1035–1040 (2008). ArticleCASPubMed Google Scholar
Zhang, T., Luo, Y., Chen, Y., Li, X. & Yu, J. BIGrat: a repeat resolver for pyrosequencing-based re-sequencing with Newbler. BMC Res. Notes5, 567 (2012). ArticlePubMedPubMed Central Google Scholar
Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics13, 341 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bashir, A. et al. A hybrid approach for the automated finishing of bacterial genomes. Nature Biotech.30, 701–707 (2012). ArticleCAS Google Scholar
Walker, T. M. et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect. Dis.13, 137–146 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gardy, J. L. et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med.364, 730–739 (2011). ArticleCASPubMed Google Scholar
Bryant, J. M. et al. Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study. Lancet Respir. Med.1, 786–792 (2013). ArticleCASPubMedPubMed Central Google Scholar