Treangen, T. J. & Rocha, E. P. C. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet.7, e1001284 (2011). ArticleCASPubMedPubMed Central Google Scholar
Swithers, K. S., Soucy, S. M. & Gogarten, J. P. The role of reticulate evolution in creating innovation and complexity. Int. J. Evol. Biol.2012, 418964 (2012). ArticlePubMedPubMed Central Google Scholar
Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol.3, 679–687 (2005). ArticleCASPubMed Google Scholar
Park, C. & Zhang, J. High expression hampers horizontal gene transfer. Genome Biol. Evol.4, 523–532 (2012). This paper examines the impact of expression level on the transferability of a gene in both environmental and laboratory populations ofE. coli. ArticleCASPubMedPubMed Central Google Scholar
Boto, L. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc. Biol. Sci.281, 20132450 (2014). PubMedPubMed Central Google Scholar
Huang, J. Horizontal gene transfer in eukaryotes: the weak-link model. Bioessays35, 868–875 (2013). This letter proposes a model for ongoing HGT in eukaryotes involving unicellular and early developmental stages to overcome the barrier of genome sequestration in eukaryotes. ArticleCASPubMedPubMed Central Google Scholar
Andersson, J. O. Gene transfer and diversification of microbial eukaryotes. Annu. Rev. Microbiol.63, 177–193 (2009). ArticleCASPubMed Google Scholar
Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet.5, 123–135 (2004). ArticleCASPubMed Google Scholar
Crisp, A., Boschetti, C., Perry, M., Tunnacliffe, A. & Micklem, G. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol.16, 50 (2015). ArticlePubMedPubMed Central Google Scholar
Riley, D. R. et al. Bacteria–human somatic cell lateral gene transfer is enriched in cancer samples. PLoS Comput. Biol.9, e1003107 (2013). ArticleCASPubMedPubMed Central Google Scholar
Norman, A., Hansen, L. H. & Sørensen, S. J. Conjugative plasmids: vessels of the communal gene pool. Phil. Trans. R. Soc. B364, 2275–2289 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kyndt, T. et al. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc. Natl Acad. Sci. USA112, 201419685 (2015). ArticleCAS Google Scholar
Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J.-P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol.12, 181–196 (2014). ArticleCASPubMed Google Scholar
Chimileski, S., Dolas, K., Naor, A., Gophna, U. & Papke, R. T. Extracellular DNA metabolism in Haloferax volcanii. Front. Microbiol.5, 57 (2014). ArticlePubMedPubMed Central Google Scholar
Lang, A. S., Zhaxybayeva, O. & Beatty, J. T. Gene transfer agents: phage-like elements of genetic exchange. Nat. Rev. Microbiol.10, 472–482 (2012). ArticleCASPubMedPubMed Central Google Scholar
Naor, A. & Gophna, U. Cell fusion and hybrids in Archaea: prospects for genome shuffling and accelerated strain development for biotechnology. Bioengineered4, 126–129 (2013). ArticlePubMed Google Scholar
Schleper, C., Holz, I., Janekovic, D., Murphy, J. & Zillig, W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J. Bacteriol.177, 4417–4426 (1995). ArticleCASPubMedPubMed Central Google Scholar
Naor, A., Lapierre, P., Mevarech, M., Papke, R. T. & Gophna, U. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol.22, 1444–1448 (2012). ArticleCASPubMed Google Scholar
Dunning Hotopp, J. C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science317, 1753–1756 (2007). This paper describes HGT betweenWolbachiaspp., an intracellular bacterial symbiont, and its multicellular eukaryotic insect hosts. ArticleCASPubMed Google Scholar
Nikoh, N. et al. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet.6, e1000827 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Moustafa, A. et al. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science324, 1724–1726 (2009). ArticleCASPubMed Google Scholar
Doolittle, W. F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet.14, 307–311 (1998). ArticleCASPubMed Google Scholar
Yue, J., Sun, G., Hu, X. & Huang, J. The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis. BMC Genomics14, 729 (2013). ArticleCASPubMedPubMed Central Google Scholar
Grant, J. R. & Katz, L. A. Phylogenomic study indicates widespread lateral gene transfer in entamoeba and suggests a past intimate relationship with parabasalids. Genome Biol. Evol.6, 2350–2360 (2014). ArticleCASPubMedPubMed Central Google Scholar
Huang, J. & Gogarten, J. P. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol.8, R99 (2007). This paper discusses a complex tripartite relationship between a eukaryotic host, a cyanobacterium and a chlamydia that may have facilitated the establishment of modern plastids. ArticlePubMedPubMed CentralCAS Google Scholar
Graham, L. A., Li, J., Davidson, W. S. & Davies, P. L. Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes. BMC Evol. Biol.12, 190 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yue, J., Hu, X., Sun, H., Yang, Y. & Huang, J. Widespread impact of horizontal gene transfer on plant colonization of land. Nat. Commun.3, 1152 (2012). ArticlePubMedCAS Google Scholar
Stewart, C. N., Halfhill, M. D. & Warwick, S. I. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet.4, 806–817 (2003). ArticleCASPubMed Google Scholar
Evans, P. D., Mekel-Bobrov, N., Vallender, E. J., Hudson, R. R. & Lahn, B. T. Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage. Proc. Natl Acad. Sci. USA103, 18178–18183 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol.19, 2226–2238 (2002). ArticleCASPubMed Google Scholar
Colston, S. M. et al. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio5 e02136-14 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Delamuta, J. R. M., Ribeiro, R. A., Menna, P., Bangel, E. V. & Hungria, M. Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria. Braz. J. Microbiol.43, 698–710 (2012). ArticleCASPubMedPubMed Central Google Scholar
Williams, D., Gogarten, J. P. & Papke, R. T. Quantifying homologous replacement of loci between haloarchaeal species. Genome Biol. Evol.4, 1223–1244 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Andam, C. P. & Gogarten, J. P. Biased gene transfer in microbial evolution. Nat. Rev. Microbiol.9, 543–555 (2011). ArticleCASPubMed Google Scholar
Polz, M., Alm, E. & Hanage, W. Horizontal gene transfer and the evolution of bacterial. 29, 170–175 (2015). This paper investigates the interplay between HGT, population structure and lineage divergence in bacteria and archaea.
Langille, M. G. I., Hsiao, W. W. L. & Brinkman, F. S. L. Detecting genomic islands using bioinformatics approaches. Nat. Rev. Microbiol.8, 373–382 (2010). ArticleCASPubMed Google Scholar
Ragan, M. A. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett.201, 187–191 (2001). ArticleCASPubMed Google Scholar
Lukjancenko, O., Wassenaar, T. M. & Ussery, D. W. Comparison of 61 sequenced Escherichia coli genomes. Microb. Ecol.60, 708–720 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial 'pan-genome'. Proc. Natl Acad. Sci. USA102, 13950–13955 (2005). ArticleCASPubMedPubMed Central Google Scholar
Read, B. A. et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature499, 209–213 (2013). ArticleCASPubMed Google Scholar
Barzel, A., Obolski, U., Gogarten, J. P., Kupiec, M. & Hadany, L. Home and away — the evolutionary dynamics of homing endonucleases. BMC Evol. Biol.11, 324 (2011). ArticlePubMedPubMed Central Google Scholar
Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature480, 241–244 (2011). This letter investigates the frequency of HGT in the human microbiome across body sites and across continents. ArticleCASPubMed Google Scholar
Rankin, D. J., Rocha, E. P. C. & Brown, S. P. What traits are carried on mobile genetic elements, and why? Hered. (Edinb.).106, 1–10 (2011). This paper investigates the types of traits that are associated with compound selfish genetic elements and investigates the ecological scenarios that would select for specific types of traits. ArticleCAS Google Scholar
Broaders, E., Gahan, C. G. M. & Marchesi, J. R. Mobile genetic elements of the human gastrointestinal tract: potential for spread of antibiotic resistance genes. Gut Microbes4, 271–280 (2013). ArticlePubMedPubMed Central Google Scholar
Feschotte, C. & Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet.13, 283–296 (2012). ArticleCASPubMed Google Scholar
Cornelis, G. et al. Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proc. Natl Acad. Sci. USA109, E432–E441 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schaack, S., Gilbert, C. & Feschotte, C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol. Evol.25, 537–546 (2010). ArticlePubMedPubMed Central Google Scholar
Skippington, E. & Ragan, M. A. Phylogeny rather than ecology or lifestyle biases the construction of Escherichia coli–Shigella genetic exchange communities. Open Biol.2, 120112 (2012). ArticlePubMedPubMed Central Google Scholar
Hendrickson, H. & Lawrence, J. G. Selection for chromosome architecture in bacteria. J. Mol. Evol.62, 615–629 (2006). ArticleCASPubMed Google Scholar
Papke, R. T. & Gogarten, J. P. Ecology. How bacterial lineages emerge. Science336, 45–46 (2012). ArticlePubMed Google Scholar
Khomyakova, M., Bükmez, Ö., Thomas, L. K., Erb, T. J. & Berg, I. A. A methylaspartate cycle in haloarchaea. Science331, 334–337 (2011). ArticleCASPubMed Google Scholar
Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of haloarchaea. Proc. Natl Acad. Sci. USA109, 20537–20542 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature517, 77–80 (2014). This paper suggests that acquisitions of genes from bacteria lead to the evolution of the major clades in archaea. ArticlePubMedPubMed CentralCAS Google Scholar
Guerrero, R., Margulis, L. & Berlanga, M. Symbiogenesis: the holobiont as a unit of evolution. Int. Microbiol.16, 133–143 (2013). PubMed Google Scholar
Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell124, 837–848 (2006). ArticleCASPubMed Google Scholar
Hehemann, J.-H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature464, 908–912 (2010). ArticleCASPubMed Google Scholar
Thomas, F. et al. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ. Microbiol.14, 2379–2394 (2012). ArticleCASPubMed Google Scholar
Hirt, R. P., Alsmark, C. & Embley, T. M. Lateral gene transfers and the origins of the eukaryote proteome: a view from microbial parasites. Curr. Opin. Microbiol.23, 155–162 (2015). ArticleCASPubMedPubMed Central Google Scholar
McFadden, G. I. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb. Perspect. Biol.6, a016105 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Ball, S. G. et al. Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell25, 7–21 (2013). ArticleCASPubMedPubMed Central Google Scholar
Moustafa, A., Reyes-Prieto, A. & Bhattacharya, D. Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS ONE3, e2205 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Price, D. C. et al. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science335, 843–847 (2012). ArticleCASPubMed Google Scholar
Cenci, U. et al. Transition from glycogen to starch metabolism in archaeplastida. Trends Plant Sci.19, 18–28 (2014). ArticleCASPubMed Google Scholar
Deschamps, P. Primary endosymbiosis: have cyanobacteria and Chlamydiae ever been roommates? Acta Soc. Bot. Pol.83, 291–302 (2014). ArticleCAS Google Scholar
Ku, C. et al. Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc. Natl Acad. Sci. USAhttp://dx.doi.org/10.1073/pnas.1421385112 (2015).
Domman, D., Horn, M., Embley, T. M. & Williams, T. A. Plastid establishment did not require a chlamydial partner. Nat. Commun.6, 6421 (2015). ArticlePubMedCAS Google Scholar
Ball, S. G. et al. Toward an understanding of the function of Chlamydiales in plastid endosymbiosis. Biochim. Biophys. Acta1847, 495–504 (2015). ArticleCASPubMed Google Scholar
Suzuki, K. & Miyagishima, S. Y. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol. Biol. Evol.27, 581–590 (2010). ArticleCASPubMed Google Scholar
Qiu, H. et al. Assessing the bacterial contribution to the plastid proteome. Trends Plant Sci.18, 680–687 (2013). ArticleCASPubMed Google Scholar
Schonknecht, G. et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science339, 1207–1210 (2013). ArticlePubMedCAS Google Scholar
Blanc, G. et al. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol.13, R39 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bhattacharya, D. et al. Genome of the red alga Porphyridium purpureum. Nat. Commun.4, 1941 (2013). ArticlePubMedCAS Google Scholar
Yue, J., Hu, X. & Huang, J. Origin of plant auxin biosynthesis. Trends Plant Sci.19, 764–770 (2014). ArticleCASPubMed Google Scholar
Yang, Z. et al. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development. New Phytol.206, 807–816 (2015). ArticleCASPubMed Google Scholar
Hoang, Q. T. et al. An actinoporin plays a key role in water stress in the moss Physcomitrella patens. New Phytol.184, 502–510 (2009). ArticleCASPubMed Google Scholar
Maumus, F., Epert, A., Nogue, F. & Blanc, G. Plant genomes enclose footprints of past infections by giant virus relatives. Nat. Commun.5, 4268 (2014). ArticleCASPubMed Google Scholar
Molbak, L., Molin, S. & Kroer, N. Root growth and exudate production define the frequency of horizontal plasmid transfer in the rhizosphere. FEMS Microbiol. Ecol.59, 167–176 (2007). ArticlePubMedCAS Google Scholar
Sun, G., Yang, Z., Ishwar, A. & Huang, J. Algal genes in the closest relatives of animals. Mol. Biol. Evol.27, 2879–2889 (2010). ArticleCASPubMed Google Scholar
Ricard, G. et al. Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics7, 22 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Paganini, J. et al. Contribution of lateral gene transfers to the genome composition and parasitic ability of root-knot nematodes. PLoS ONE7, e50875 (2012). ArticleCASPubMedPubMed Central Google Scholar
Richards, T. A. et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc. Natl Acad. Sci. USA108, 15258–15263 (2011). ArticleCASPubMedPubMed Central Google Scholar
Li, Z. W., Shen, Y. H., Xiang, Z. H. & Zhang, Z. Pathogen–origin horizontally transferred genes contribute to the evolution of Lepidopteran insects. BMC Evol. Biol.11, 356 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wybouw, N. et al. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife3, e02365 (2014). ArticlePubMedPubMed Central Google Scholar
Yoshida, S., Maruyama, S., Nozaki, H. & Shirasu, K. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science328, 1128 (2010). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Evolution of a horizontally acquired legume gene, albumin 1, in the parasitic plant Phelipanche aegyptiaca and related species. BMC Evol. Biol.13, 48 (2013). ArticleCASPubMedPubMed Central Google Scholar
Zhang, D. et al. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific _strictosidine synthase_-like genes by horizontal gene transfer. BMC Plant Biol.14, 19 (2014). ArticlePubMedPubMed Central Google Scholar
Christin, P.-A. et al. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr. Biol.22, 445–449 (2012). ArticleCASPubMed Google Scholar
Li, F.-W. et al. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc. Natl Acad. Sci. USA111, 6672–6677 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H.-H., Feschotte, C., Han, M.-J. & Zhang, Z. Recurrent horizontal transfers of Chapaev transposons in diverse invertebrate and vertebrate animals. Genome Biol. Evol.6, 1375–1386 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lynch, M. Mutation accumulation in transfer RNAs: molecular evidence for Muller's ratchet in mitochondrial genomes. Mol. Biol. Evol.13, 209–220 (1996). ArticleCASPubMed Google Scholar
Palmer, J. D. et al. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc. Natl Acad. Sci. USA97, 6960–6966 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rice, D. W. et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science342, 1468–1473 (2013). This paper reports the acquisition of several mitochondrial genomes by the mitochondria inAmborella trichopodaa basal flowering plant. ArticleCASPubMed Google Scholar
Edwards, A. W. F. Cogwheels of the Mind: The Story of Venn Diagrams (JHU Press, 2004). Google Scholar
Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio3, e00036-12 (2012). This paper explains how the interplay between cheating and selection for streamlined genomes can give rise to shared genomic resources. ArticlePubMedPubMed Central Google Scholar
Lobkovsky, A. E., Wolf, Y. I. & Koonin, E. V. Estimation of prokaryotic supergenome size and composition from gene frequency distributions. BMC Genomics15, S14 (2014). ArticlePubMedPubMed Central Google Scholar
Lapierre, P. & Gogarten, J. P. Estimating the size of the bacterial pan-genome. Trends Genet.25, 107–110 (2009). ArticleCASPubMed Google Scholar
Puigbò, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol.12, 66 (2014). ArticlePubMedPubMed Central Google Scholar
Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol.4, 443–456 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hooper, L. V. & Gordon, J. I. Commensal host–bacterial relationships in the gut. Science292, 1115–1118 (2001). ArticleCASPubMed Google Scholar
Lederberg, J. & McCray, A. 'Ome sweet 'omics — a genealogical treasury of words. Scientist15, 8 (2001). Google Scholar
Becker, E. A. et al. Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet.10, e1004784 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Groussin, M et al. Origins of major archaeal clades do not correspond to gene acquisitions from bacteria. BioRxivhttp://dx.doi:10.1101/019851 (2015).