Regulation of plasma-cell development (original) (raw)
Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol.22, 55–79 (2004). ArticleCASPubMed Google Scholar
Krangel, M. S. Gene segment selection in V(D)J recombination: accessibility and beyond. Nature Immunol.4, 624–630 (2003). ArticleCAS Google Scholar
Ohashi, P. S. & DeFranco, A. L. Making and breaking tolerance. Curr. Opin. Immunol.14, 744–759 (2002). ArticleCASPubMed Google Scholar
Hardy, R. R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol.19, 595–621 (2001). ArticleCASPubMed Google Scholar
Chung, J. B., Silverman, M. & Monroe, J. G. Transitional B cells: step by step towards immune competence. Trends Immunol.24, 343–349 (2003). ArticleCASPubMed Google Scholar
Pillai, S., Cariappa, A. & Moran, S. T. Marginal zone B cells. Annu. Rev. Immunol. 20 Oct 2004 (10.1146/annurev.immunol.23.021704.115728).
Lopes-Carvalho, T. & Kearney, J. F. Development and selection of marginal zone B cells. Immunol. Rev.197, 192–205 (2004). ArticlePubMed Google Scholar
Tanigaki, K. et al. Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature Immunol.3, 443–450 (2002). ArticleCAS Google Scholar
Oliver, A. M., Martin, F., Gartland, G. L., Carter, R. H. & Kearney, J. F. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol.27, 2366–2374 (1997). ArticleCASPubMed Google Scholar
Oliver, A. M., Martin, F. & Kearney, J. F. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J. Immunol.162, 7198–7207 (1999). CASPubMed Google Scholar
Jacob, J., Kassir, R. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J. Exp. Med.173, 1165–1175 (1991). ArticleCASPubMed Google Scholar
Smith, K. G., Hewitson, T. D., Nossal, G. J. & Tarlinton, D. M. The phenotype and fate of the antibody-forming cells of the splenic foci. Eur. J. Immunol.26, 444–448 (1996). ArticleCASPubMed Google Scholar
McHeyzer-Williams, L. J., Driver, D. J. & McHeyzer-Williams, M. G. Germinal center reaction. Curr. Opin. Hematol.8, 52–59 (2001). ArticleCASPubMed Google Scholar
Bishop, G. A. & Hostager, B. S. Signaling by CD40 and its mimics in B cell activation. Immunol. Res.24, 97–109 (2001). ArticleCASPubMed Google Scholar
Kim, C. H. et al. Unique gene expression program of human germinal center T helper cells. Blood104, 1952–1960 (2004). ArticleCASPubMed Google Scholar
Crotty, S., Kersh, E. N., Cannons, J., Schwartzberg, P. L. & Ahmed, R. SAP is required for generating long-term humoral immunity. Nature421, 282–287 (2003). ArticleCASPubMed Google Scholar
Barrington, R. A., Pozdnyakova, O., Zafari, M. R., Benjamin, C. D. & Carroll, M. C. B lymphocyte memory: role of stromal cell complement and FcγRIIB receptors. J. Exp. Med.196, 1189–1199 (2002). ArticleCASPubMedPubMed Central Google Scholar
McHeyzer-Williams, M. G. & Ahmed, R. B cell memory and the long-lived plasma cell. Curr. Opin. Immunol.11, 172–179 (1999). ArticleCASPubMed Google Scholar
Maruyama, M., Lam, K. P. & Rajewsky, K. Memory B-cell persistence is independent of persisting immunizing antigen. Nature407, 636–642 (2000). ArticleCASPubMed Google Scholar
Tangye, S. G., Avery, D. T., Deenick, E. K. & Hodgkin, P. D. Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J. Immunol.170, 686–694 (2003). ArticleCASPubMed Google Scholar
Bernasconi, N. L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science298, 2199–2202 (2002). This paper showed that bystander T-cell help and CpG oligodeoxynucleotides can activate human memory B cells in an antigen-independent manner. ArticleCASPubMed Google Scholar
McHeyzer-Williams, L. J., Cool, M. & McHeyzer-Williams, M. G. Antigen-specific B cell memory: expression and replenishment of a novel B220− memory B cell compartment. J. Exp. Med.191, 1149–1166 (2000). ArticleCASPubMedPubMed Central Google Scholar
O'Connor, B. P., Cascalho, M. & Noelle, R. J. Short-lived and long-lived bone marrow plasma cells are derived from a novel precursor population. J. Exp. Med.195, 737–745 (2002). ArticleCASPubMedPubMed Central Google Scholar
Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory cells. Immunity19, 607–620 (2003). In this study, mice with a B-cell-specific deletion of the gene that encodes BLIMP1 were created, and it was shown that BLIMP1 is required for plasma-cell formation and immunoglobulin secretion. ArticleCASPubMed Google Scholar
Hasbold, J., Corcoran, L. M., Tarlinton, D. M., Tangye, S. G. & Hodgkin, P. D. Evidence from the generation of immunoglobulin G-secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nature Immunol.5, 55–63 (2004). In this study, a division-tracking dye and stimulation of B cellsin vitrowere used, and it was shown that, at each cell division, there is a probability of plasmacytic differentiation. ArticleCAS Google Scholar
Tangye, S. G. & Hodgkin, P. D. Divide and conquer: the importance of cell division in regulating B-cell responses. Immunology112, 509–520 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nutt, S. L., Eberhard, D., Horcher, M., Rolink, A. G. & Busslinger, M. Pax5 determines the identity of B cells from the beginning to the end of B-lymphopoiesis. Int. Rev. Immunol.20, 65–82 (2001). ArticleCASPubMed Google Scholar
Lin, K. I., Angelin-Duclos, C., Kuo, T. C. & Calame, K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol. Cell. Biol.22, 4771–4780 (2002). ArticleCASPubMedPubMed Central Google Scholar
Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity14, 779–790 (2001). ArticleCASPubMed Google Scholar
Reimold, A. M. et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med.183, 393–401 (1996). ArticleCASPubMed Google Scholar
Rinkenberger, J. L., Wallin, J. J., Johnson, K. W. & Koshland, M. E. An interleukin-2 signal relieves BSAP (Pax5)-mediated repression of the immunoglobulin J chain gene. Immunity5, 377–386 (1996). ArticleCASPubMed Google Scholar
Singh, M. & Birshtein, B. K. NF-HB (BSAP) is a repressor of the murine immunoglobulin heavy-chain 3′α enhancer at early stages of B-cell differentiation. Mol. Cell. Biol.13, 3611–3622 (1993). ArticleCASPubMedPubMed Central Google Scholar
Shaffer, A. L., Peng, A. & Schlissel, M. S. In vivo occupancy of the κ light chain enhancers in primary pro- and pre-B cells: a model for κ locus activation. Immunity6, 131–143 (1997). ArticleCASPubMed Google Scholar
Lin, L., Gerth, A. J. & Peng, S. L. Active inhibition of plasma cell development in resting B cells by microphthalmia-associated transcription factor. J. Exp. Med.200, 115–122 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood86, 45–53 (1995). CASPubMed Google Scholar
Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science276, 589–592 (1997). ArticleCASPubMed Google Scholar
Shaffer, A. L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity13, 199–212 (2000). In this study, microarray analyses were used to identify direct targets of BCL-6, including the gene encoding BLIMP1. ArticleCASPubMed Google Scholar
Fearon, D. T., Manders, P. M. & Wagner, S. D. Bcl-6 uncouples B lymphocyte proliferation from differentiation. Adv. Exp. Med. Biol.512, 21–28 (2002). ArticlePubMed Google Scholar
Tunyaplin, C. et al. Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J. Immunol.173, 1158–1165 (2004). ArticleCASPubMed Google Scholar
Vasanwala, F. H., Kusam, S., Toney, L. M. & Dent, A. L. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J. Immunol.169, 1922–1929 (2002). ArticleCASPubMed Google Scholar
Reljic, R., Wagner, S. D., Peakman, L. J. & Fearon, D. T. Suppression of signal transducer and activator of transcription 3-dependent B lymphocyte terminal differentiation by BCL-6. J. Exp. Med.192, 1841–1848 (2000). ArticleCASPubMedPubMed Central Google Scholar
Phan, R. T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature432, 635–639 (2004). ArticleCASPubMed Google Scholar
Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell119, 75–86 (2004). This paper showed that MTA3 is required for BCL-6 activity and that, when both MTA3 and BCL-6 are expressed by plasmacytomas, the immunoglobulin-secretion phenotype can be reversed. ArticleCASPubMed Google Scholar
Muto, A. et al. The transcriptional programme of antibody class switching involves the repressor Bach2. Nature429, 566–571 (2004). This paper showed that BACH2 is required for the germinal-centre reaction and that it might inhibit plasmacytic differentiation. ArticleCASPubMed Google Scholar
Turner, C. A. Jr, Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell77, 297–306 (1994). ArticleCASPubMed Google Scholar
Angelin-Duclos, C., Cattoretti, G., Lin, K. I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol.165, 5462–5471 (2000). ArticleCASPubMed Google Scholar
Kallies, A. et al. Plasma cell ontogeny defined by quantitative changes in Blimp-1 expression. J. Exp. Med.200, 967–977 (2004). In this study, a knock-in of the gene encoding green fluorescent protein into thePrdm1locus provided a way to measure BLIMP1 expression during B-cell development and showed that all BLIMP1+ B cells secrete immunoglobulin. ArticleCASPubMedPubMed Central Google Scholar
Lin, Y., Wong, K. & Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science276, 596–599 (1997). ArticleCASPubMed Google Scholar
Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity17, 51–62 (2002). In this study, microarray analyses of human B-cell lines that ectopically express BLIMP1 allowed the identification of multiple genes that are regulated by BLIMP1. These could be divided into three categories on the basis of their function: repression of proliferation, induction of immunoglobulin secretion and repression of B-cell functions. ArticleCASPubMed Google Scholar
Shaffer, A. L. et al. XBP1 acts downstream of Blimp-1 to expand the secretory apparatus, promote organelle biogenesis, and increase protein synthesis during plasma cell differentiation. Immunity21, 81–93 (2004). ArticleCASPubMed Google Scholar
Sciammas, R. & Davis, M. M. Modular nature of Blimp-1 in the regulation of gene expression during B cell maturation. J. Immunol.172, 5427–5440 (2004). ArticleCASPubMed Google Scholar
Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature412, 300–307 (2001). In this study, recombination-activating gene 1 (RAG1)-deficient blastocyst complementation was used to identify the transcriptional activator XBP1 as the first transcriptional regulator known to be required for plasma-cell formation. ArticleCASPubMed Google Scholar
Mittrucker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science275, 540–543 (1997). ArticleCASPubMed Google Scholar
Falini, B. et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood95, 2084–2092 (2000). CASPubMed Google Scholar
Eisenbeis, C. F., Singh, H. & Storb, U. Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator. Genes Dev.9, 1377–1387 (1995). ArticleCASPubMed Google Scholar
Pongubala, J. M. & Atchison, M. L. PU.1 can participate in an active enhancer complex without its transcriptional activation domain. Proc. Natl Acad. Sci. USA94, 127–132 (1997). ArticleCASPubMedPubMed Central Google Scholar
Allman, D. et al. BCL-6 expression during B-cell activation. Blood87, 5257–5268 (1996). CASPubMed Google Scholar
Niu, H., Ye, B. H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev.12, 1953–1961 (1998). ArticleCASPubMedPubMed Central Google Scholar
Muto, A. et al. Identification of Bach2 as a B-cell-specific partner for small Maf proteins that negatively regulate the immunoglobulin heavy chain gene 3′ enhancer. EMBO J.17, 5734–5743 (1998). ArticleCASPubMedPubMed Central Google Scholar
Schliephake, D. E. & Schimpl, A. Blimp-1 overcomes the block in IgM secretion in lipopolysaccharide/anti-μ F(ab′)2-co-stimulated B lymphocytes. Eur. J. Immunol.26, 268–271 (1996). ArticleCASPubMed Google Scholar
Snapper, C. M., Kehry, M. R., Castle, B. E. & Mond, J. J. Multivalent, but not divalent, antigen receptor cross-linkers synergize with CD40 ligand for induction of Ig synthesis and class switching in normal murine B cells. A redefinition of the TI-2 vs T cell-dependent antigen dichotomy. J. Immunol.154, 1177–1187 (1995). CASPubMed Google Scholar
McHeyzer-Williams, L. J. & McHeyzer-Williams, M. G. Developmentally distinct TH cells control plasma cell production in vivo. Immunity20, 231–242 (2004). ArticleCASPubMed Google Scholar
Gantner, F. et al. CD40-dependent and -independent activation of human tonsil B cells by CpG oligodeoxynucleotides. Eur. J. Immunol.33, 1576–1585 (2003). ArticleCASPubMed Google Scholar
Piskurich, J. F. et al. BLIMP-1 mediates extinction of major histocompatibility class II transactivator expression in plasma cells. Nature Immunol.1, 526–532 (2000). ArticleCAS Google Scholar
Wen, X. Y. et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells. Int. J. Oncol.15, 173–178 (1999). CASPubMed Google Scholar
Ozaki, K. et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol.173, 5361–5371 (2004). ArticleCASPubMed Google Scholar
Fearon, D. T., Manders, P. & Wagner, S. D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science293, 248–250 (2001). ArticleCASPubMed Google Scholar
Singh, M. & Birshtein, B. K. Concerted repression of an immunoglobulin heavy-chain enhancer, 3′αE(hs1,2). Proc. Natl Acad. Sci. USA93, 4392–4397 (1996). ArticleCASPubMedPubMed Central Google Scholar
Andersson, T., Samuelsson, A., Matthias, P. & Pettersson, S. The lymphoid-specific cofactor OBF-1 is essential for the expression of a VH promoter/HS1,2 enhancer-linked transgene in late B cell development. Mol. Immunol.37, 889–899 (2000). ArticleCASPubMed Google Scholar
Casellas, R. et al. OcaB is required for normal transcription and V(D)J recombination of a subset of immunoglobulin κ genes. Cell110, 575–585 (2002). ArticleCASPubMed Google Scholar
Peterson, M. L., Bertolino, S. & Davis, F. An RNA polymerase pause site is associated with the immunoglobulin μs poly(A) site. Mol. Cell. Biol.22, 5606–5615 (2002). ArticleCASPubMedPubMed Central Google Scholar
Veraldi, K. L. et al. hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells. Mol. Cell. Biol.21, 1228–1238 (2001). ArticleCASPubMedPubMed Central Google Scholar
Early, P. et al. Two mRNAs can be produced from a single immunoglobulin μ gene by alternative RNA processing pathways. Cell20, 313–319 (1980). ArticleCASPubMed Google Scholar
Rogers, J. et al. Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin μ chain. Cell20, 303–312 (1980). ArticleCASPubMed Google Scholar
Harding, H. P., Calfon, M., Urano, F., Novoa, I. & Ron, D. Transcriptional and translational control in the mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol.18, 575–599 (2002). ArticleCASPubMed Google Scholar
Gass, J. N., Gunn, K. E., Sriburi, R. & Brewer, J. W. Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends Immunol.25, 17–24 (2004). ArticleCASPubMed Google Scholar
Gass, J. N., Gifford, N. M. & Brewer, J. W. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J. Biol. Chem.277, 49047–49054 (2002). ArticleCASPubMed Google Scholar
Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature415, 92–96 (2002). ArticleCASPubMed Google Scholar
Iwakoshi, N. N. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nature Immunol.4, 321–329 (2003). ArticleCAS Google Scholar
Yoshida, H. et al. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the _cis_-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol.20, 6755–6767 (2000). ArticleCASPubMedPubMed Central Google Scholar
van Anken, E. et al. Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity18, 243–253 (2003). ArticleCASPubMed Google Scholar
Vieira, P. & Rajewsky, K. The half-lives of serum immunoglobulins in adult mice. Eur. J. Immunol.18, 313–316 (1988). ArticleCASPubMed Google Scholar
Slifka, M. K., Matloubian, M. & Ahmed, R. Bone marrow is a major site of long-term antibody production after acute viral infection. J. Virol.69, 1895–1902 (1995). CASPubMedPubMed Central Google Scholar
Manz, R. A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature388, 133–134 (1997). ArticleCASPubMed Google Scholar
Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived plasma cells. Immunity8, 363–372 (1998). In this study, adoptive transfer of antigen-specific plasma cells to naive mice was used to show that long-lived plasma cells survive and secrete antibody for more than 1 year, and this occurs in the absence of any detectable memory cells. ArticleCASPubMed Google Scholar
Manz, R. A., Lohning, M., Cassese, G., Thiel, A. & Radbruch, A. Survival of long-lived plasma cells is independent of antigen. Int. Immunol.10, 1703–1711 (1998). ArticleCASPubMed Google Scholar
Sze, D. M., Toellner, K. M., Garcia de Vinuesa, C., Taylor, D. R. & MacLennan, I. C. Intrinsic constraint on plasmablast growth and extrinsic limits of plasma cell survival. J. Exp. Med.192, 813–821 (2000). ArticleCASPubMedPubMed Central Google Scholar
Knodel, M., Kuss, A. W., Lindemann, D., Berberich, I. & Schimpl, A. Reversal of Blimp-1-mediated apoptosis by A1, a member of the Bcl-2 family. Eur. J. Immunol.29, 2988–2998 (1999). ArticleCASPubMed Google Scholar
Arce, S. et al. The role of long-lived plasma cells in autoimmunity. Immunobiology206, 558–562 (2002). ArticlePubMed Google Scholar
Gorman, C., Leandro, M. & Isenberg, D. B cell depletion in autoimmune disease. Arthritis Res. Ther.5 (Suppl. 4), S17–S21 (2003). ArticlePubMedPubMed Central Google Scholar
Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med.199, 1577–1584 (2004). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, Y., Dutta, P. R., Cerasoli, D. M. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection. J. Exp. Med.187, 885–895 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kunkel, E. J. & Butcher, E. C. Plasma-cell homing. Nature Rev. Immunol.3, 822–829 (2003). ArticleCAS Google Scholar
Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med.194, 45–56 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hopken, U. E., Achtman, A. H., Kruger, K. & Lipp, M. Distinct and overlapping roles of CXCR5 and CCR7 in B-1 cell homing and early immunity against bacterial pathogens. J. Leukoc. Biol.76, 709–718 (2004). ArticleCASPubMed Google Scholar
Hauser, A. E. et al. Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response. J. Immunol.169, 1277–1282 (2002). ArticleCASPubMed Google Scholar
Odendahl, M. et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood105, 1614–1621 (2005). ArticleCASPubMed Google Scholar
Underhill, G. H. et al. IgG plasma cells display a unique spectrum of leukocyte adhesion and homing molecules. Blood99, 2905–2912 (2002). ArticleCASPubMed Google Scholar
Ellyard, J. I. et al. Antigen-selected, immunoglobulin-secreting cells persist in human spleen and bone marrow. Blood103, 3805–3812 (2004). ArticleCASPubMed Google Scholar
Minges Wols, H. A., Underhill, G. H., Kansas, G. S. & Witte, P. L. The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J. Immunol.169, 4213–4221 (2002). In this study, isolating normal plasma cells and culturing themin vitroshowed that stromal cells provide survival signals to plasma cells. The plasma cells stimulate the stromal cells to produce IL-6, a crucial survival factor. ArticleCASPubMed Google Scholar
Cassese, G. et al. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J. Immunol.171, 1684–1690 (2003). ArticleCASPubMed Google Scholar
Cortes, M. & Georgopoulos, K. Aiolos is required for the generation of high affinity bone marrow plasma cells responsible for long-term immunity. J. Exp. Med.199, 209–219 (2004). Analysis of mice deficient in Aiolos showed that long-lived plasma cells did not appear in the bone marrow, establishing a requirement for Aiolos in this process. ArticleCASPubMedPubMed Central Google Scholar
Lee, A. H., Iwakoshi, N. N., Anderson, K. C. & Glimcher, L. H. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc. Natl Acad. Sci. USA100, 9946–9951 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ren, B., Chee, K. J., Kim, T. H. & Maniatis, T. PRDI-BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev.13, 125–137 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yu, J., Angelin-Duclos, C., Greenwood, J., Liao, J. & Calame, K. Transcriptional repression by Blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol. Cell. Biol.20, 2592–2603 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gyory, I., Wu, J., Fejer, G., Seto, E. & Wright, K. L. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nature Immunol.5, 299–308 (2004). ArticleCAS Google Scholar
Lin, K. I., Lin, Y. & Calame, K. Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro. Mol. Cell. Biol.20, 8684–8695 (2000). ArticleCASPubMedPubMed Central Google Scholar
Berland, R. & Wortis, H. H. Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol.20, 253–300 (2002). ArticleCASPubMed Google Scholar
Wardemann, H., Boehm, T., Dear, N. & Carsetti, R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J. Exp. Med.195, 771–780 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science274, 1906–1909 (1996). ArticleCASPubMed Google Scholar
Berland, R. & Wortis, H. H. Normal B-1a cell development requires B cell-intrinsic NFATc1 activity. Proc. Natl Acad. Sci. USA100, 13459–13464 (2003). ArticleCASPubMedPubMed Central Google Scholar
Karras, J. G. et al. Signal transducer and activator of transcription-3 (STAT3) is constitutively activated in normal, self-renewing B-1 cells but only inducibly expressed in conventional B lymphocytes. J. Exp. Med.185, 1035–1042 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ye, B. H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science262, 747–750 (1993). ArticleCASPubMed Google Scholar
Chang, C. C., Ye, B. H., Chaganti, R. S. & Dalla-Favera, R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl Acad. Sci. USA93, 6947–6952 (1996). ArticleCASPubMedPubMed Central Google Scholar
Keller, A. D. & Maniatis, T. Identification and characterization of a novel repressor of β-interferon gene expression. Genes Dev.5, 868–879 (1991). ArticleCASPubMed Google Scholar
Kuo, T. C. & Calame, K. L. B lymphocyte-induced maturation protein (Blimp)-1, IFN regulatory factor (IRF)-1, and IRF-2 can bind to the same regulatory sites. J. Immunol.173, 5556–5563 (2004). ArticleCASPubMed Google Scholar
Marecki, S. & Fenton, M. J. The role of IRF-4 in transcriptional regulation. J. Interferon Cytokine Res.22, 121–133 (2002). ArticleCASPubMed Google Scholar
Hemesath, T. J. et al. Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev.8, 2770–2780 (1994). ArticleCASPubMed Google Scholar
Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell113, 207–219 (2003). ArticleCASPubMed Google Scholar
Adams, B. et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev.6, 1589–1607 (1992). ArticleCASPubMed Google Scholar
Liou, H. C. et al. A new member of the leucine zipper class of proteins that binds to the HLA DR α promoter. Science247, 1581–1584 (1990). ArticleCASPubMed Google Scholar
Shapiro-Shelef, M. & Calame, K. Regulation of normal and malignant plasma cells. Curr. Opin. Immunol.16, 226–230 (2004). ArticleCASPubMed Google Scholar