Immune adaptations that maintain homeostasis with the intestinal microbiota (original) (raw)
Mathers, C. D., Boerma, T. & Ma Fat, D. Global and regional causes of death. Br. Med. Bull.92, 7–32 (2009). ArticlePubMed Google Scholar
Xu, J. et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science299, 2074–2076 (2003). ArticleCASPubMed Google Scholar
Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science307, 1955–1959 (2005). ArticleCASPubMed Google Scholar
Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe4, 447–457 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Rev. Microbiol.6, 776–788 (2008). ArticleCAS Google Scholar
Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science291, 881–884 (2001). This paper shows that commensal bacteria manipulate host cell functions and widely influence host biology, revealing the essential nature of the interactions between resident microorganisms and their mammalian hosts. ArticleCASPubMed Google Scholar
Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunol.4, 269–273 (2003). ArticleCAS Google Scholar
Stappenbeck, T. S., Hooper, L. V. & Gordon, J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl Acad. Sci. USA99, 15451–15455 (2002). ArticleCASPubMedPubMed Central Google Scholar
He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity26, 812–826 (2007). ArticleCASPubMed Google Scholar
Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe4, 337–349 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hall, J. A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity29, 637–649 (2008). ArticleCASPubMedPubMed Central Google Scholar
Stecher, B. et al. Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect. Immun.73, 3228–3241 (2005). ArticleCASPubMedPubMed Central Google Scholar
Klare, I., Werner, G. & Witte, W. Enterococci. Habitats, infections, virulence factors, resistances to antibiotics, transfer of resistance determinants. Contrib. Microbiol.8, 108–122 (2001). ArticleCASPubMed Google Scholar
Benson, A., Pifer, R., Behrendt, C. L., Hooper, L. V. & Yarovinsky, F. Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell Host Microbe6, 187–196 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kuwahara, T. et al. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc. Natl Acad. Sci. USA101, 14919–14924 (2004). ArticleCASPubMedPubMed Central Google Scholar
Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA105, 15064–15069 (2008). This paper clearly visualizes the spatial relationships between the microbiota and the intestinal epithelial cell surface, and it shows that mucus glycoproteins are essential for limiting direct contact between luminal bacteria and epithelial cells. ArticleCASPubMedPubMed Central Google Scholar
Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology131, 117–129 (2006). ArticleCASPubMed Google Scholar
Celli, J. P. et al. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl Acad. Sci. USA106, 14321–14326 (2009). ArticleCASPubMedPubMed Central Google Scholar
Guerry, P. Campylobacter flagella: not just for motility. Trends Microbiol.15, 456–461 (2007). ArticleCASPubMed Google Scholar
Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature432, 917–921 (2004). ArticleCASPubMed Google Scholar
Putsep, K. et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem.275, 40478–40482 (2000). ArticleCASPubMed Google Scholar
Brandl, K., Plitas, G., Schnabl, B., Dematteo, R. P. & Pamer, E. G. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med.204, 1891–1900 (2007). ArticleCASPubMedPubMed Central Google Scholar
Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl Acad. Sci. USA105, 20858–20863 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307, 731–734 (2005). ArticleCASPubMed Google Scholar
Meyer-Hoffert, U. et al. Secreted enteric antimicrobial activity localizes to the mucus surface layer. Gut57, 764–771 (2008). ArticleCASPubMed Google Scholar
Boneca, I. G. et al. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc. Natl Acad. Sci. USA104, 997–1002 (2007). ArticleCASPubMedPubMed Central Google Scholar
Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell95, 189–198 (1998). ArticleCASPubMed Google Scholar
Raffatellu, M. et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe5, 476–486 (2009). ArticleCASPubMedPubMed Central Google Scholar
Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA101, 1981–1986 (2004). ArticleCASPubMedPubMed Central Google Scholar
Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science288, 2222–2226 (2000). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science303, 1662–1665 (2004). This study shows that DCs harbouring live commensal bacteria are restricted to the mucosal immune compartment by mesenteric lymph nodes, which thus function as an immune firewall that limits systemic penetration of commensal bacteria. ArticleCASPubMed Google Scholar
Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol.2, 361–367 (2001). ArticleCAS Google Scholar
Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science307, 254–258 (2005). ArticleCASPubMed Google Scholar
Fagarasan, S. & Honjo, T. Intestinal IgA synthesis: regulation of front-line body defences. Nature Rev. Immunol.3, 63–72 (2003). ArticleCAS Google Scholar
Lee, S. H., Starkey, P. M. & Gordon, S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J. Exp. Med.161, 475–489 (1985). ArticleCASPubMed Google Scholar
Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol.1, 460–469 (2008). ArticleCASPubMedPubMed Central Google Scholar
Smythies, L. E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest.115, 66–75 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sansonetti, P. J. War and peace at mucosal surfaces. Nature Rev. Immunol.4, 953–964 (2004). ArticleCAS Google Scholar
Macpherson, A. J., Geuking, M. B. & McCoy, K. D. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology115, 153–162 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA102, 99–104 (2005). ArticleCASPubMed Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004). ArticleCASPubMed Google Scholar
Shroff, K. E., Meslin, K. & Cebra, J. J. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun.63, 3904–3913 (1995). CASPubMedPubMed Central Google Scholar
Benveniste, J., Lespinats, G. & Salomon, J. Serum and secretory IgA in axenic and holoxenic mice. J. Immunol.107, 1656–1662 (1971). CASPubMed Google Scholar
Guy-Grand, D. et al. Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation. J. Exp. Med.173, 471–481 (1991). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol.4, 478–485 (2004). ArticleCAS Google Scholar
Barnes, M. J. & Powrie, F. Regulatory T cells reinforce intestinal homeostasis. Immunity31, 401–411 (2009). ArticleCASPubMed Google Scholar
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75, 263–274 (1993). ArticleCASPubMed Google Scholar
Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature359, 693–699 (1992). ArticleCASPubMedPubMed Central Google Scholar
Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature455, 396–400 (2008). ArticleCASPubMed Google Scholar
Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity1, 553–562 (1994). ArticleCASPubMed Google Scholar
Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med.190, 995–1004 (1999). ArticleCASPubMedPubMed Central Google Scholar
Asseman, C., Read, S. & Powrie, F. Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: control by CD4+ regulatory T cells and IL-10. J. Immunol.171, 971–978 (2003). ArticleCASPubMed Google Scholar
Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity26, 579–591 (2007). ArticleCASPubMed Google Scholar
Cong, Y., Weaver, C. T., Lazenby, A. & Elson, C. O. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J. Immunol.169, 6112–6119 (2002). ArticleCASPubMed Google Scholar
Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature453, 620–625 (2008). ArticleCASPubMed Google Scholar
Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity31, 677–689 (2009). ArticleCASPubMed Google Scholar
Neurath, M. F. et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J. Exp. Med.195, 1129–1143 (2002). ArticleCASPubMedPubMed Central Google Scholar
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell122, 107–118 (2005). ArticleCASPubMed Google Scholar
Mazmanian, S. K. & Kasper, D. L. The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Rev. Immunol.6, 849–858 (2006). ArticleCAS Google Scholar
Becker, C. et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest.112, 693–706 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gautreaux, M. D., Gelder, F. B., Deitch, E. A. & Berg, R. D. Adoptive transfer of T lymphocytes to T-cell-depleted mice inhibits Escherichia coli translocation from the gastrointestinal tract. Infect. Immun.63, 3827–3834 (1995). CASPubMedPubMed Central Google Scholar
Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity24, 677–688 (2006). ArticleCASPubMed Google Scholar
Lee, Y. K., Mukasa, R., Hatton, R. D. & Weaver, C. T. Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol.21, 274–280 (2009). ArticleCASPubMed Google Scholar
Maloy, K. J. et al. CD4+CD25+ TR cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med.197, 111–119 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kullberg, M. C. et al. Bacteria-triggered CD4+ T regulatory cells suppress _Helicobacter hepaticus_-induced colitis. J. Exp. Med.196, 505–515 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kullberg, M. C. et al. IL-23 plays a key role in _Helicobacter hepaticus_-induced T cell-dependent colitis. J. Exp. Med.203, 2485–2494 (2006). ArticleCASPubMedPubMed Central Google Scholar
Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science266, 1253–1255 (1994). ArticleCASPubMed Google Scholar
Chen, Y., Chou, K., Fuchs, E., Havran, W. L. & Boismenu, R. Protection of the intestinal mucosa by intraepithelial γδ T cells. Proc. Natl Acad. Sci. USA99, 14338–14343 (2002). ArticleCASPubMedPubMed Central Google Scholar
Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science279, 1737–1740 (1998). ArticleCASPubMed Google Scholar
Ismail, A. S., Behrendt, C. L. & Hooper, L. V. Reciprocal interactions between commensal bacteria and γδ intraepithelial lymphocytes during mucosal injury. J. Immunol.182, 3047–3054 (2009). ArticleCASPubMed Google Scholar
Poussier, P., Ning, T., Banerjee, D. & Julius, M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Exp. Med.195, 1491–1497 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol.10, 83–91 (2009). ArticleCAS Google Scholar
Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med.14, 282–289 (2008). ArticleCASPubMed Google Scholar
Shiloh, M. U. et al. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity10, 29–38 (1999). This study shows the essential role of microbicidal mechanisms in containing the commensal intestinal microbiota. ArticleCASPubMed Google Scholar
Sansonetti, P. Phagocytosis of bacterial pathogens: implications in the host response. Semin. Immunol.13, 381–390 (2001). ArticleCASPubMed Google Scholar
Gowans, J. L. & Knight, E. J. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. Lond. B Biol. Sci.159, 257–282 (1964). ArticleCASPubMed Google Scholar
Husband, A. J. & Gowans, J. L. The origin and antigen-dependent distribution of IgA-containing cells in the intestine. J. Exp. Med.148, 1146–1160 (1978). This is a landmark study of the immune geography of the mucosal immune system, showing the dissemination of IgA+ plasma cells that have been induced in the intestinal mucosa through the lymph and blood. ArticleCASPubMed Google Scholar
Pierce, N. F. & Gowans, J. L. Cellular kinetics of the intestinal immune response to cholera toxoid in rats. J. Exp. Med.142, 1550–1563 (1975). ArticleCASPubMed Google Scholar
Nagl, M. et al. Phagocytosis and killing of bacteria by professional phagocytes and dendritic cells. Clin. Diagn. Lab. Immunol.9, 1165–1168 (2002). PubMedPubMed Central Google Scholar
Konrad, A., Cong, Y., Duck, W., Borlaza, R. & Elson, C. O. Tight mucosal compartmentation of the murine immune response to antigens of the enteric microbiota. Gastroenterology130, 2050–2059 (2006). ArticleCASPubMed Google Scholar
Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol.43, 3380–3389 (2005). ArticlePubMedPubMed Central Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603 (2001). CASPubMed Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). References 88 and 89 show thatNOD2polymorphisms account for a proportion of the genetic risk of Crohn's disease. This was the first of a large number of linked genetic loci to be identified and the suspected dysregulation of host–microorganism mutualism as a cause of IBD was reinforced by the finding that NOD2 senses a bacterial cell wall component. ArticleCASPubMed Google Scholar
Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature456, 259–263 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell134, 743–756 (2008). ArticleCASPubMedPubMed Central Google Scholar
Garabedian, E. M., Roberts, L. J., McNevin, M. S. & Gordon, J. I. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem.272, 23729–23740 (1997). ArticleCASPubMed Google Scholar
Chapel, H. et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood112, 277–286 (2008). ArticleCASPubMed Google Scholar
Notarangelo, L. et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee Meeting in Budapest, 2005. J. Allergy Clin. Immunol.117, 883–896 (2006). ArticlePubMed Google Scholar
Casanova, J. L. & Abel, L. Primary immunodeficiencies: a field in its infancy. Science317, 617–619 (2007). ArticleCASPubMed Google Scholar
Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science308, 1635–1638 (2005). This landmark study uses molecular profiling to reveal the diversity of the human microflora and establish the dominant bacterial phylotypes that inhabit the human gastrointestinal tract. ArticlePubMedPubMed Central Google Scholar
Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem.278, 5509–5512 (2003). ArticleCASPubMed Google Scholar