Signal integration and crosstalk during thymocyte migration and emigration (original) (raw)
Bhandoola, A., von Boehmer, H., Petrie, H. T. & Zúñiga-Pflücker, J. C. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity26, 678–689 (2007). ArticleCASPubMed Google Scholar
Petrie, H. T. & Zúñiga-Pflücker, J. C. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol.25, 649–679 (2007). ArticleCASPubMed Google Scholar
Takahama, Y. Journey through the thymus: stromal guides for T-cell development and selection. Nature Rev. Immunol.6, 127–135 (2006). ArticleCAS Google Scholar
Hollander, G. et al. Cellular and molecular events during early thymus development. Immunol. Rev.209, 28–46 (2006). ArticleCASPubMed Google Scholar
Blackburn, C. C. & Manley, N. R. Developing a new paradigm for thymus organogenesis. Nature Rev. Immunol.4, 278–289 (2004). ArticleCAS Google Scholar
Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell91, 661–672 (1997). ArticleCASPubMed Google Scholar
Karsunky, H., Inlay, M. A., Serwold, T., Bhattacharya, D. & Weissman, I. L. Flk2+ common lymphoid progenitors possess equivalent differentiation potential for the B and T lineages. Blood111, 5562–5570 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). ArticleCASPubMed Google Scholar
Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow Lin−Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity15, 659–669 (2001). ArticleCASPubMed Google Scholar
Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell121, 295–306 (2005). ArticleCASPubMed Google Scholar
Christensen, J. L. & Weissman, I. L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl Acad. Sci. USA98, 14541–14546 (2001). ArticleCASPubMedPubMed Central Google Scholar
Igarashi, H., Gregory, S., Yokota, T., Sakaguchi, N. & Kincade, P. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity17, 117–130 (2002). ArticleCASPubMed Google Scholar
Yokota, T. et al. Unique properties of fetal lymphoid progenitors identified according to RAG1 gene expression. Immunity19, 365–375 (2003). ArticleCASPubMed Google Scholar
Inlay, M. A. et al. Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development. Genes Dev.23, 2376–2381 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mansson, R. et al. Single cell analysis of the common lymphoid progenitor compartment reveals functional and molecular heterogeneity. Blood115, 2601–2609 (2009). ArticlePubMedCAS Google Scholar
Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nature Immunol.4, 168–174 (2003). ArticleCAS Google Scholar
Schwarz, B. A. et al. Selective thymus settling regulated by cytokine and chemokine receptors. J. Immunol.178, 2008–2017 (2007). This paper showed that the ability to settle in the normal adult mouse thymus is not broadly distributed among haematopoietic progenitors, but that thymic settling is selective, and that expression of CCR9 provides part of the explanation for this selectivity. ArticleCASPubMed Google Scholar
Chatterjea-Matthes, D. et al. Early defect prethymic in bone marrow T cell progenitors in athymic nu/nu mice. J. Immunol.171, 1207–1215 (2003). ArticleCASPubMed Google Scholar
Dejbakhsh-Jones, S., Garcia-Ojeda, M. E., Chatterjea-Matthes, D., Zeng, D. & Strober, S. Clonable progenitors committed to the T lymphocyte lineage in the mouse bone marrow; use of an extrathymic pathway. Proc. Natl Acad. Sci. USA98, 7455–7460 (2001). ArticleCASPubMedPubMed Central Google Scholar
Dejbakhsh-Jones, S. & Strober, S. Identification of an early T cell progenitor for a pathway of T cell maturation in the bone marrow. Proc. Natl Acad. Sci. USA96, 14493–14498 (1999). ArticleCASPubMedPubMed Central Google Scholar
Garcia-Ojeda, M. E. et al. Stepwise development of committed progenitors in the bone marrow that generate functional T cells in the absence of the thymus. J. Immunol.175, 4363–4373 (2005). ArticleCASPubMed Google Scholar
Rodewald, H. R., Kretzschmar, K., Takeda, S., Hohl, C. & Dessing, M. Identification of pro-thymocytes in murine fetal blood: T lineage commitment can precede thymus colonization. EMBO J.13, 4229–4240 (1994). ArticleCASPubMedPubMed Central Google Scholar
Arcangeli, M. L. et al. Extrathymic hemopoietic progenitors committed to T cell differentiation in the adult mouse. J. Immunol.174, 1980–1988 (2005). ArticleCASPubMed Google Scholar
Maillard, I. et al. Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation. Blood107, 3511–3519 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mori, S., Shortman, K. & Wu, L. Characterization of thymus-seeding precursor cells from mouse bone marrow. Blood98, 696–704 (2001). ArticleCASPubMed Google Scholar
Scimone, M. L., Aifantis, I., Apostolou, I., von Boehmer, H. & von Andrian, U. H. A multistep adhesion cascade for lymphoid progenitor cell homing to the thymus. Proc. Natl Acad. Sci. USA103, 7006–7011 (2006). ArticleCASPubMedPubMed Central Google Scholar
von Andrian, U. H. & Mackay, C. R. T-cell function and migration. Two sides of the same coin. N. Engl. J. Med.343, 1020–1034 (2000). ArticleCASPubMed Google Scholar
Krueger, A., Willenzon, S., Lyszkiewicz, M., Kremmer, E. & Forster, R. CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood115, 1906–1912 (2010). Together with reference 28, this paper shows that CCR7, like CCR9, is expressed only on progenitor cells that can settle in the thymus (that is, TSPs), and that thymic settling in adult mice is almost entirely abrogated in the absence of CCR7 and CCR9. ArticleCASPubMed Google Scholar
Wurbel, M. A., Malissen, B. & Campbell, J. J. Complex regulation of CCR9 at multiple discrete stages of T cell development. Eur. J. Immunol.36, 73–81 (2006). ArticleCASPubMed Google Scholar
Liu, C. et al. Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood108, 2531–2539 (2006). ArticleCASPubMed Google Scholar
Uehara, S., Grinberg, A., Farber, J. M. & Love, P. E. A role for CCR9 in T lymphocyte development and migration. J. Immunol.168, 2811–2819 (2002). ArticleCASPubMed Google Scholar
Uehara, S., Song, K., Farber, J. M. & Love, P. E. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development: CD3highCD69+ thymocytes and γδTCR+ thymocytes preferentially respond to CCL25. J. Immunol.168, 134–142 (2002). ArticleCASPubMed Google Scholar
Gossens, K. et al. Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25. J. Exp. Med.206, 761–778 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rossi, F. M. et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nature Immunol.6, 626–634 (2005). This paper identifies an important role for P-selectin on thymic endothelium and its ligand on haematopoeitic progenitors in regulating physiological thymic homing. ArticleCAS Google Scholar
Calderon, L. & Boehm, T. Three chemokine receptors cooperatively regulate homing of hematopoietic progenitors to the embryonic mouse thymus. Proc. Natl Acad. Sci. USA108, 7517–7522 (2011). ArticleCASPubMedPubMed Central Google Scholar
Robertson, P., Means, T. K., Luster, A. D. & Scadden, D. T. CXCR4 and CCR5 mediate homing of primitive bone marrow-derived hematopoietic cells to the postnatal thymus. Exp. Hematol.34, 308–319 (2006). ArticleCASPubMed Google Scholar
Stimamiglio, M. A. et al. EphB2-mediated interactions are essential for proper migration of T cell progenitors during fetal thymus colonization. J. Leukoc. Biol.88, 483–494 (2010). ArticleCASPubMed Google Scholar
Liu, C. et al. The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood105, 31–39 (2005). This work established a role for CCR7 and CCR9 in fetal thymic colonization. ArticleCASPubMed Google Scholar
Ueno, T. et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity16, 205–218 (2002). ArticleCASPubMed Google Scholar
Saran, N. et al. Multiple extrathymic precursors contribute to T-cell development with different kinetics. Blood115, 1137–1144 (2010). ArticleCASPubMedPubMed Central Google Scholar
Benz, C. & Bleul, C. C. A multipotent precursor in the thymus maps to the branching point of the T versus B lineage decision. J. Exp. Med.202, 21–31 (2005). This paper described CCR9–EGFP reporter mice and was the first to establish that CCR9 is expressed by subsets of primitive haematopoietic progenitors and marks developmentally primitive subsets of early thymocyte progenitors with multilineage potential (including DC and B cell lineage potentials). ArticleCASPubMedPubMed Central Google Scholar
Serwold, T., Ehrlich, L. I. & Weissman, I. L. Reductive isolation from bone marrow and blood implicates common lymphoid progenitors as the major source of thymopoiesis. Blood113, 807–815 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bell, J. J. & Bhandoola, A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature452, 764–767 (2008). ArticleCASPubMed Google Scholar
Schlenner, S. M. et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity32, 426–436 (2010). ArticleCASPubMed Google Scholar
Wada, H. et al. Adult T-cell progenitors retain myeloid potential. Nature452, 768–772 (2008). ArticleCASPubMed Google Scholar
Lai, A. Y. & Kondo, M. Identification of a bone marrow precursor of the earliest thymocytes in adult mouse. Proc. Natl Acad. Sci. USA104, 6311–6316 (2007). This work establishes that CCR9-expressing lymphoid-primed multipotent progenitors can directly home to the thymus in anin vivomodel of short-term homing using sublethal irradiation. ArticleCASPubMedPubMed Central Google Scholar
Desanti, G. E. et al. Clonal analysis reveals uniformity in the molecular profile and lineage potential of CCR9+ and CCR9− thymus-settling progenitors. J. Immunol.186, 5227–5235 (2011). ArticleCASPubMed Google Scholar
Foss, D. L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med.193, 365–374 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ciofani, M., Knowles, G. C., Wiest, D. L., von Boehmer, H. & Zúñiga-Pflücker, J. C. Stage-specific and differential Notch dependency at the αβ and γδ T lineage bifurcation. Immunity25, 105–116 (2006). ArticleCASPubMed Google Scholar
Lind, E. F., Prockop, S. E., Porritt, H. E. & Petrie, H. T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med.194, 127–134 (2001). This paper shows that thymocyte progenitors enter the thymus from blood vessels in the cortico-medullary junction before migrating outwards to the subcapsular zone. ArticleCASPubMedPubMed Central Google Scholar
Benz, C., Heinzel, K. & Bleul, C. C. Homing of immature thymocytes to the subcapsular microenvironment within the thymus is not an absolute requirement for T cell development. Eur. J. Immunol.34, 3652–3663 (2004). ArticleCASPubMed Google Scholar
Plotkin, J., Prockop, S. E., Lepique, A. & Petrie, H. T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol.171, 4521–4527 (2003). ArticleCASPubMed Google Scholar
Porritt, H. E., Gordon, K. & Petrie, H. T. Kinetics of steady-state differentiation and mapping of intrathymic-signaling environments by stem cell transplantation in nonirradiated mice. J. Exp. Med.198, 957–962 (2003). ArticleCASPubMedPubMed Central Google Scholar
Petrie, H. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nature Rev. Immunol.3, 859–866 (2003). ArticleCAS Google Scholar
Norment, A. M., Bogatzki, L. Y., Gantner, B. N. & Bevan, M. J. Murine CCR9, a chemokine receptor for thymus-expressed chemokine that is up-regulated following pre-TCR signaling. J. Immunol.164, 639–648 (2000). ArticleCASPubMed Google Scholar
Trampont, P. C. et al. CXCR4 acts as a costimulator during thymic β-selection. Nature Immunol.11, 162–170 (2010). This paper established a role for CXCR4 in thymocyte development and survival linked to pre-TCR signalling at the β-selection checkpoint. ArticleCAS Google Scholar
Kim, K., Lee, C. K., Sayers, T. J., Muegge, K. & Durum, S. K. The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2, and -T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J. Immunol.160, 5735–5741 (1998). CASPubMed Google Scholar
Witt, C. M., Raychaudhuri, S., Schaefer, B., Chakraborty, A. K. & Robey, E. A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol.3, e160 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Li, J., Iwanami, N., Hoa, V. Q., Furutani-Seiki, M. & Takahama, Y. Noninvasive intravital imaging of thymocyte dynamics in medaka. J. Immunol.179, 1605–1615 (2007). ArticleCASPubMed Google Scholar
Suzuki, G. et al. Loss of SDF-1 receptor expression during positive selection in the thymus. Int. Immunol.10, 1049–1056 (1998). ArticleCASPubMed Google Scholar
Davalos-Misslitz, A. C., Worbs, T., Willenzon, S., Bernhardt, G. & Forster, R. Impaired responsiveness to T-cell receptor stimulation and defective negative selection of thymocytes in CCR7-deficient mice. Blood110, 4351–4359 (2007). ArticleCASPubMed Google Scholar
Campbell, J. J., Pan, J. & Butcher, E. C. Cutting edge: developmental switches in chemokine responses during T cell maturation. J. Immunol.163, 2353–2357 (1999). CASPubMed Google Scholar
Ehrlich, L. I., Oh, D. Y., Weissman, I. L. & Lewis, R. S. Differential contribution of chemotaxis and substrate restriction to segregation of immature and mature thymocytes. Immunity31, 986–998 (2009). ArticleCASPubMed Google Scholar
Kwan, J. & Killeen, N. CCR7 directs the migration of thymocytes into the thymic medulla. J. Immunol.172, 3999–4007 (2004). This paper shows that expression of CCR7, as normally occurs after positive selection, can be sufficient to drive thymocyte migration from the cortex to the medulla. ArticleCASPubMed Google Scholar
Kurobe, H. et al. CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity24, 165–177 (2006). This paper showed that the consequences of impaired cortico-medullary migration, as occurs in CCR7-deficient mice, include compromised AIRE-mediated negative selection and the development of autoimmunity. ArticleCASPubMed Google Scholar
Nitta, T., Nitta, S., Lei, Y., Lipp, M. & Takahama, Y. CCR7-mediated migration of developing thymocytes to the medulla is essential for negative selection to tissue-restricted antigens. Proc. Natl Acad. Sci. USA106, 17129–17133 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yin, X. et al. CCR7 expression in developing thymocytes is linked to the CD4 versus CD8 lineage decision. J. Immunol.179, 7358–7364 (2007). ArticleCASPubMed Google Scholar
Suzuki, G. et al. Pertussis toxin-sensitive signal controls the trafficking of thymocytes across the corticomedullary junction in the thymus. J. Immunol.162, 5981–5985 (1999). CASPubMed Google Scholar
Le Borgne, M. et al. The impact of negative selection on thymocyte migration in the medulla. Nature Immunol.10, 823–830 (2009). ArticleCAS Google Scholar
Fabre, S. et al. FOXO1 regulates L-selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J. Immunol.181, 2980–2989 (2008). ArticleCASPubMed Google Scholar
McCaughtry, T. M., Wilken, M. S. & Hogquist, K. A. Thymic emigration revisited. J. Exp. Med.204, 2513–2520 (2007). This paper used RAG-reporter mice to refine the description of newly generated mature thymocytes; this refined focus allowed revision of previous estimates of medullary residence from 2 weeks to 4–5 days. ArticleCASPubMedPubMed Central Google Scholar
Kremer, L. et al. The transient expression of C-C chemokine receptor 8 in thymus identifies a thymocyte subset committed to become CD4+ single-positive T cells. J. Immunol.166, 218–225 (2001). ArticleCASPubMed Google Scholar
Schabath, R. et al. The murine chemokine receptor CXCR4 is tightly regulated during T cell development and activation. J. Leukoc. Biol.66, 996–1004 (1999). ArticleCASPubMed Google Scholar
Kim, C. H., Pelus, L. M., White, J. R. & Broxmeyer, H. E. Differential chemotactic behavior of developing T cells in response to thymic chemokines. Blood91, 4434–4443 (1998). CASPubMed Google Scholar
Vianello, F. et al. A CXCR4-dependent chemorepellent signal contributes to the emigration of mature single-positive CD4 cells from the fetal thymus. J. Immunol.175, 5115–5125 (2005). ArticleCASPubMed Google Scholar
Wurbel, M. A. et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor γδ+ gut intraepithelial lymphocytes. Blood98, 2626–2632 (2001). ArticleCASPubMed Google Scholar
Allende, M. L., Dreier, J. L., Mandala, S. & Proia, R. L. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem.279, 15396–15401 (2004). ArticleCASPubMed Google Scholar
Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature427, 355–360 (2004). References 85 and 86 established that thymocyte emigration requires S1P1. ArticleCASPubMed Google Scholar
Zachariah, M. A. & Cyster, J. G. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science328, 1129–1135 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science316, 295–298 (2007). ArticleCASPubMed Google Scholar
Carlson, C. M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature442, 299–302 (2006). This paper demonstrates a crucial function for the transcription factor KLF2 in thymocyte emigration. ArticleCASPubMed Google Scholar
Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nature Immunol.10, 176–184 (2009). This paper shows that FOXO1 regulates the expression of CD62L, CCR7 and KLF2. ArticleCAS Google Scholar
Gubbels Bupp, M. R. et al. T cells require Foxo1 to populate the peripheral lymphoid organs. Eur. J. Immunol.39, 2991–2999 (2009). ArticleCASPubMed Google Scholar
Ouyang, W., Beckett, O., Flavell, R. A. & Li, M. O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity30, 358–371 (2009). ArticleCASPubMedPubMed Central Google Scholar
Weinreich, M. A. & Hogquist, K. A. Thymic emigration: when and how T cells leave home. J. Immunol.181, 2265–2270 (2008). ArticleCASPubMed Google Scholar
Cantrell, D. A. Regulation and function of serine kinase networks in lymphocytes. Curr. Opin. Immunol.15, 294–298 (2003). ArticleCASPubMed Google Scholar
Barbee, S. D. & Alberola-Ila, J. Phosphatidylinositol 3-kinase regulates thymic exit. J. Immunol.174, 1230–1238 (2005). ArticleCASPubMed Google Scholar
Sinclair, L. V. et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nature Immunol.9, 513–521 (2008). This paper demonstrates that PI3K signalling regulates the expression of KLF2, CCR7 and CD62L. ArticleCAS Google Scholar
Uldrich, A. P. et al. Antigen challenge inhibits thymic emigration. J. Immunol.176, 4553–4561 (2006). ArticleCASPubMed Google Scholar
Finlay, D. & Cantrell, D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann. NY Acad. Sci.1183, 149–157 (2010). ArticleCASPubMed Google Scholar
Bankovich, A. J., Shiow, L. R. & Cyster, J. G. CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem.285, 22328–22337 (2010). This paper provides a mechanism for the CD69-mediated regulation of S1P1that involves the induction of S1P1internalization and degradation. ArticleCASPubMedPubMed Central Google Scholar
Shiow, L. R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature440, 540–544 (2006). ArticleCASPubMed Google Scholar
Sancho, D., Gomez, M. & Sanchez-Madrid, F. CD69 is an immunoregulatory molecule induced following activation. Trends Immunol.26, 136–140 (2005). ArticleCASPubMed Google Scholar
Rosen, H., Alfonso, C., Surh, C. D. & McHeyzer-Williams, M. G. Rapid induction of medullary thymocyte phenotypic maturation and egress inhibition by nanomolar sphingosine 1-phosphate receptor agonist. Proc. Natl Acad. Sci. USA100, 10907–10912 (2003). ArticleCASPubMedPubMed Central Google Scholar
Feng, C. et al. A potential role for CD69 in thymocyte emigration. Int. Immunol.14, 535–544 (2002). ArticleCASPubMed Google Scholar
Grossman, Z. & Singer, A. Tuning of activation thresholds explains flexibility in the selection and development of T cells in the thymus. Proc. Natl Acad. Sci. USA93, 14747–14752 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wong, P., Barton, G. M., Forbush, K. A. & Rudensky, A. Y. Dynamic tuning of T cell reactivity by self-peptide–major histocompatibility complex ligands. J. Exp. Med.193, 1179–1187 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mercher, T. et al. Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell3, 314–326 (2008). ArticleCASPubMedPubMed Central Google Scholar
McCormack, M. P. et al. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science327, 879–883 (2010). ArticleCASPubMed Google Scholar
Lei, Y. et al. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J. Exp. Med.208, 383–394 (2011). This paper provides the first example of a chemokine receptor that regulates the homing of bone marrow-derived DCs to the thymus. ArticleCASPubMedPubMed Central Google Scholar
Storek, J. et al. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin. Immunopathol.30, 425–437 (2008). ArticlePubMed Google Scholar
Wright, D. E., Bowman, E. P., Wagers, A. J., Butcher, E. C. & Weissman, I. L. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J. Exp. Med.195, 1145–1154 (2002). ArticleCASPubMedPubMed Central Google Scholar
Si, Y., Tsou, C. L., Croft, K. & Charo, I. F. CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J. Clin. Invest.120, 1192–1203 (2010). ArticleCASPubMedPubMed Central Google Scholar
Benz, C., Martins, V. C., Radtke, F. & Bleul, C. C. The stream of precursors that colonizes the thymus proceeds selectively through the early T lineage precursor stage of T cell development. J. Exp. Med.205, 1187–1199 (2008). ArticleCASPubMedPubMed Central Google Scholar
Carramolino, L. et al. Expression of CCR9 β-chemokine receptor is modulated in thymocyte differentiation and is selectively maintained in CD8+ T cells from secondary lymphoid organs. Blood97, 850–857 (2001). ArticleCASPubMed Google Scholar