Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science284, 770–776 (1999). ArticleCASPubMed Google Scholar
Bray, S. J. Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol.7, 678–689 (2006). ArticleCASPubMed Google Scholar
Kitagawa, M. Notch signalling in the nucleus: roles of Mastermind-like (MAML) transcriptional coactivators. J. Biochem.159, 287–294 (2016). CASPubMed Google Scholar
Collier, J. R., Monk, N. A., Maini, P. K. & Lewis, J. H. Pattern formation by lateral inhibition with feedback: a mathematical model of δ-notch intercellular signalling. J. Theor. Biol.183, 429–446 (1996). ArticleCASPubMed Google Scholar
Vallejo, D. M., Caparros, E. & Dominguez, M. Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO J.30, 756–769 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kim, J., Irvine, K. D. & Carroll, S. B. Cell recognition, signal induction, and symmetrical gene activation at the dorsal–ventral boundary of the developing Drosophila wing. Cell82, 795–802 (1995). ArticleCASPubMed Google Scholar
Yan, S. J., Gu, Y., Li, W. X. & Fleming, R. J. Multiple signaling pathways and a selector protein sequentially regulate Drosophila wing development. Development131, 285–298 (2004). ArticleCASPubMed Google Scholar
Shimojo, H. et al. Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis. Genes Dev.30, 102–116 (2016). This recent paper demonstrates Delta oscillations in neural stem cells. ArticleCASPubMedPubMed Central Google Scholar
Bone, R. A. et al. Spatiotemporal oscillations of Notch1, Dll1 and NICD are coordinated across the mouse PSM. Development141, 4806–4816 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wahi, K., Bochter, M. S. & Cole, S. E. The many roles of Notch signaling during vertebrate somitogenesis. Semin. Cell Dev. Biol.49, 68–75 (2016). ArticleCASPubMed Google Scholar
Kiernan, A. E., Xu, J. & Gridley, T. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear. PLoS Genet.2, e4 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Neves, J., Parada, C., Chamizo, M. & Giraldez, F. Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development138, 735–744 (2011). ArticleCASPubMed Google Scholar
Haddon, C., Jiang, Y. J., Smithers, L. & Lewis, J. δ-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development125, 4637–4644 (1998). ArticleCASPubMed Google Scholar
Brooker, R., Hozumi, K. & Lewis, J. Notch ligands with contrasting functions: Jagged1 and Delta1 in the mouse inner ear. Development133, 1277–1286 (2006). ArticleCASPubMed Google Scholar
Neves, J., Abello, G., Petrovic, J. & Giraldez, F. Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo. Dev. Growth Differ.55, 96–112 (2013). ArticlePubMed Google Scholar
Daudet, N., Ariza-McNaughton, L. & Lewis, J. Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development134, 2369–2378 (2007). ArticleCASPubMed Google Scholar
Benedito, R. & Hellstrom, M. Notch as a hub for signaling in angiogenesis. Exp. Cell Res.319, 1281–1288 (2013). ArticleCASPubMed Google Scholar
Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature445, 776–780 (2007). ArticlePubMedCAS Google Scholar
Kopan, R., Chen, S. & Liu, Z. Alagille, Notch, and robustness: why duplicating systems does not ensure redundancy. Pediatr. Nephrol.29, 651–657 (2014). ArticlePubMed Google Scholar
Luca, V. C. et al. Structural biology. Structural basis for Notch1 engagement of Delta-like 4. Science347, 847–853 (2015). This paper describes the binding interface between a ligand and Notch, and suggests a contribution from glycosylation. ArticleCASPubMedPubMed Central Google Scholar
Gama-Norton, L. et al. Notch signal strength controls cell fate in the haemogenic endothelium. Nat. Commun.6, 8510 (2015). By using different Cre derivatives of Notch1, this paper revealed differences in signalling strengths associated with two outcomes. ArticleCASPubMed Google Scholar
Petrovic, J. et al. Ligand-dependent Notch signaling strength orchestrates lateral induction and lateral inhibition in the developing inner ear. Development141, 2313–2324 (2014). ArticleCASPubMed Google Scholar
Bellavia, D. et al. Notch3: from subtle structural differences to functional diversity. Oncogene27, 5092–5098 (2008). ArticleCASPubMed Google Scholar
Penton, A. L., Leonard, L. D. & Spinner, N. B. Notch signaling in human development and disease. Semin. Cell Dev. Biol.23, 450–457 (2012). ArticleCASPubMedPubMed Central Google Scholar
Fan, X. et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res.64, 7787–7793 (2004). ArticleCASPubMed Google Scholar
Liu, Z. et al. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis. Development142, 2452–2463 (2015). This paper investigates functional differences between Notch1 and Notch2 by swapping their intracellular domains in the endogenous loci. ArticleCASPubMedPubMed Central Google Scholar
Liu, Z. et al. The extracellular domain of Notch2 increases its cell-surface abundance and ligand responsiveness during kidney development. Dev. Cell25, 585–598 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
del Alamo, D., Rouault, H. & Schweisguth, F. Mechanism and significance of _cis_-inhibition in Notch signalling. Curr. Biol.21, R40–R47 (2011). ArticleCASPubMed Google Scholar
de Celis, J. F. & Bray, S. Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development124, 3241–3251 (1997). ArticleCASPubMed Google Scholar
Micchelli, C. A., Rulifson, E. J. & Blair, S. S. The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development124, 1485–1495 (1997). ArticleCASPubMed Google Scholar
Becam, I., Fiuza, U. M., Arias, A. M. & Milan, M. A role of receptor Notch in ligand _cis_-inhibition in Drosophila. Curr. Biol.20, 554–560 (2010). ArticleCASPubMed Google Scholar
Glittenberg, M., Pitsouli, C., Garvey, C., Delidakis, C. & Bray, S. Role of conserved intracellular motifs in Serrate signalling. _cis_-inhibition and endocytosis. EMBO J.25, 4697–4706 (2006). ArticleCASPubMedPubMed Central Google Scholar
Sprinzak, D. et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature465, 86–90 (2010). These elegant modelling experiments suggestcisinhibition could make the switch between two mutually exclusive cell states ultra-sensitive. ArticleCASPubMedPubMed Central Google Scholar
Miller, A. C., Lyons, E. L. & Herman, T. G. _cis_-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr. Biol.19, 1378–1383 (2009). ArticleCASPubMedPubMed Central Google Scholar
Boareto, M. et al. Jagged–Delta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid phenotype. Proc. Natl Acad. Sci. USA112, E402–E409 (2015). CASPubMedPubMed Central Google Scholar
James, A. C. et al. Notch4 reveals a novel mechanism regulating Notch signal transduction. Biochim. Biophys. Acta1843, 1272–1284 (2014). ArticleCASPubMed Google Scholar
Ladi, E. et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Biol.170, 983–992 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hoyne, G. F., Chapman, G., Sontani, Y., Pursglove, S. E. & Dunwoodie, S. L. A cell autonomous role for the Notch ligand Delta-like 3 in αβ T-cell development. Immunol. Cell Biol.89, 696–705 (2011). ArticleCASPubMed Google Scholar
Chapman, G., Sparrow, D. B., Kremmer, E. & Dunwoodie, S. L. Notch inhibition by the ligand Delta-like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum. Mol. Genet.20, 905–916 (2011). ArticleCASPubMed Google Scholar
Takeuchi, H. & Haltiwanger, R. S. Significance of glycosylation in Notch signaling. Biochem. Biophys. Res. Commun.453, 235–242 (2014). ArticleCASPubMedPubMed Central Google Scholar
Rana, N. A. & Haltiwanger, R. S. Fringe benefits: functional and structural impacts of _O_-glycosylation on the extracellular domain of Notch receptors. Curr. Opin. Struct. Biol.21, 583–589 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yang, L. T. et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell16, 927–942 (2005). ArticleCASPubMedPubMed Central Google Scholar
Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature387, 908–912 (1997). ArticleCASPubMed Google Scholar
Doherty, D., Feger, G., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand, in Drosophila wing formation. Genes Dev.10, 421–434 (1996). ArticleCASPubMed Google Scholar
Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell137, 1124–1135 (2009). This is an example of a context that illustrates divergent consequences from activation by different ligands. ArticleCASPubMed Google Scholar
D'Amato, G. et al. Sequential Notch activation regulates ventricular chamber development. Nat. Cell Biol.18, 7–20 (2016). ArticleCASPubMed Google Scholar
Marklund, U. et al. Domain-specific control of neurogenesis achieved through patterned regulation of Notch ligand expression. Development137, 437–445 (2010). ArticleCASPubMed Google Scholar
LeBon, L., Lee, T. V., Sprinzak, D., Jafar-Nejad, H. & Elowitz, M. B. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states. eLife3, e02950 (2014). This paper shows modelling experiments that shed light on how Fringe proteins can affect signalling capabilities. ArticlePubMedPubMed Central Google Scholar
Parks, A. L., Klueg, K. M., Stout, J. R. & Muskavitch, M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development127, 1373–1385 (2000). ArticleCASPubMed Google Scholar
Yamamoto, S., Charng, W. L. & Bellen, H. J. Endocytosis and intracellular trafficking of Notch and its ligands. Curr. Top. Dev. Biol.92, 165–200 (2010). ArticleCASPubMedPubMed Central Google Scholar
Meloty-Kapella, L., Shergill, B., Kuon, J., Botvinick, E. & Weinmaster, G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell22, 1299–1312 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gordon, W. R. et al. Structural basis for autoinhibition of Notch. Nat. Struct. Mol. Biol.14, 295–300 (2007). This paper described the structure of the Notch NRR, providing insights into mechanisms of activation. ArticleCASPubMed Google Scholar
Gordon, W. R. et al. Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell33, 729–736 (2015). These elegant experiments show that application of force could activate the receptor. ArticleCASPubMedPubMed Central Google Scholar
Wang, W. & Struhl, G. Distinct roles for Mind bomb, Neuralized and Epsin in mediating DSL endocytosis and signaling in Drosophila. Development132, 2883–2894 (2005). ArticleCASPubMed Google Scholar
Overstreet, E., Fitch, E. & Fischer, J. A. Fat facets and liquid facets promote Delta endocytosis and Delta signaling in the signaling cells. Development131, 5355–5366 (2004). ArticleCASPubMed Google Scholar
Lai, E. C., Roegiers, F., Qin, X., Jan, Y. N. & Rubin, G. M. The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta. Development132, 2319–2332 (2005). ArticleCASPubMed Google Scholar
Daskalaki, A. et al. Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized. J. Cell Biol.195, 1017–1031 (2011). ArticleCASPubMedPubMed Central Google Scholar
Le Borgne, R., Remaud, S., Hamel, S. & Schweisguth, F. Two distinct E3 ubiquitin ligases have complementary functions in the regulation of Delta and Serrate signaling in Drosophila. PLoS Biol.3, e96 (2005). ArticlePubMedPubMed Central Google Scholar
Fontana, J. R. & Posakony, J. W. Both inhibition and activation of Notch signaling rely on a conserved Neuralized-binding motif in Bearded proteins and the Notch ligand Delta. Dev. Biol.333, 373–385 (2009). ArticleCASPubMedPubMed Central Google Scholar
Le Borgne, R. & Schweisguth, F. Unequal segregation of Neuralized biases Notch activation during asymmetric cell division. Dev. Cell5, 139–148 (2003). ArticleCASPubMed Google Scholar
Yoon, K. J. et al. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron58, 519–531 (2008). ArticleCASPubMed Google Scholar
Dong, Z., Yang, N., Yeo, S. Y., Chitnis, A. & Guo, S. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron74, 65–78 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vaccari, T., Lu, H., Kanwar, R., Fortini, M. E. & Bilder, D. Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J. Cell Biol.180, 755–762 (2008). This paper takes a systematic approach to assess the contribution made by endocytosis in the signal receiving cell. ArticleCASPubMedPubMed Central Google Scholar
Giebel, B. & Wodarz, A. Tumor suppressors: control of signaling by endocytosis. Curr. Biol.16, R91–R92 (2006). ArticleCASPubMed Google Scholar
Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell9, 711–720 (2005). ArticleCASPubMed Google Scholar
Troost, T., Jaeckel, S., Ohlenhard, N. & Klein, T. The tumour suppressor Lethal (2) giant discs is required for the function of the ESCRT-III component Shrub/CHMP4. J. Cell Sci.125, 763–776 (2012). ArticleCASPubMed Google Scholar
Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating Notch trafficking. Dev. Cell9, 687–698 (2005). ArticleCASPubMed Google Scholar
Chastagner, P., Israel, A. & Brou, C. Itch/AIP4 mediates Deltex degradation through the formation of K29-linked polyubiquitin chains. EMBO Rep.7, 1147–1153 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hori, K., Sen, A., Kirchhausen, T. & Artavanis-Tsakonas, S. Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J. Cell Biol.195, 1005–1015 (2011). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, H. et al. Compensatory flux changes within an endocytic trafficking network maintain thermal robustness of Notch signaling. Cell157, 1160–1174 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kechad, A. et al. Numb is required for the production of terminal asymmetric cell divisions in the developing mouse retina. J. Neurosci.32, 17197–17210 (2012). ArticleCASPubMedPubMed Central Google Scholar
Frise, E., Knoblich, J. A., Younger-Shepherd, S., Jan, L. Y. & Jan, Y. N. The Drosophila Numb protein inhibits signaling of the Notch receptor during cell–cell interaction in sensory organ lineage. Proc. Natl Acad. Sci. USA93, 11925–11932 (1996). ArticleCASPubMedPubMed Central Google Scholar
Spana, E. P. & Doe, C. Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron17, 21–26 (1996). ArticleCASPubMed Google Scholar
Zilian, O. et al. Multiple roles of mouse Numb in tuning developmental cell fates. Curr. Biol.11, 494–501 (2001). ArticleCASPubMed Google Scholar
Lin, S. et al. Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain. Development137, 43–51 (2010). ArticleCASPubMedPubMed Central Google Scholar
Couturier, L., Mazouni, K. & Schweisguth, F. Numb localizes at endosomes and controls the endosomal sorting of notch after asymmetric division in Drosophila. Curr. Biol.23, 588–593 (2013). ArticleCASPubMed Google Scholar
O'Connor-Giles, K. M. & Skeath, J. B. Numb inhibits membrane localization of Sanpodo, a four-pass transmembrane protein, to promote asymmetric divisions in Drosophila. Dev. Cell5, 231–243 (2003). ArticleCASPubMed Google Scholar
Hutterer, A. & Knoblich, J. A. Numb and α-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs. EMBO Rep.6, 836–842 (2005). ArticleCASPubMedPubMed Central Google Scholar
Couturier, L., Vodovar, N. & Schweisguth, F. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nat. Cell Biol.14, 131–139 (2012). Pioneering use of live imaging to track Numb and Notch during cell-fate decision. ArticleCASPubMed Google Scholar
Coumailleau, F., Furthauer, M., Knoblich, J. A. & Gonzalez-Gaitan, M. Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature458, 1051–1055 (2009). ArticleCASPubMed Google Scholar
Kressmann, S., Campos, C., Castanon, I., Furthauer, M. & Gonzalez-Gaitan, M. Directional Notch trafficking in Sara endosomes during asymmetric cell division in the spinal cord. Nat. Cell Biol.17, 333–339 (2015). ArticleCASPubMed Google Scholar
Herranz, H., Stamataki, E., Feiguin, F. & Milan, M. Self-refinement of Notch activity through the transmembrane protein Crumbs: modulation of γ-secretase activity. EMBO Rep.7, 297–302 (2006). ArticleCASPubMedPubMed Central Google Scholar
Singh, J. & Mlodzik, M. Hibris, a Drosophila nephrin homolog, is required for presenilin-mediated Notch and APP-like cleavages. Dev. Cell23, 82–96 (2012). ArticleCASPubMedPubMed Central Google Scholar
Khait, I. et al. Quantitative analysis of Delta-like 1 membrane dynamics elucidates the role of contact geometry on Notch signaling. Cell Rep.14, 225–233 (2016). ArticleCASPubMed Google Scholar
Cohen, M., Georgiou, M., Stevenson, N. L., Miodownik, M. & Baum, B. Dynamic filopodia transmit intermittent Delta–Notch signaling to drive pattern refinement during lateral inhibition. Dev. Cell19, 78–89 (2010). ArticleCASPubMed Google Scholar
Huang, H. & Kornberg, T. B. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta–Notch signaling to the air sac primordium. eLife4, e06114 (2015). ArticlePubMedPubMed Central Google Scholar
Eom, D. S., Bain, E. J., Patterson, L. B., Grout, M. E. & Parichy, D. M. Long-distance communication by specialized cellular projections during pigment pattern development and evolution. eLife4, e12401 (2015). ArticlePubMedPubMed Central Google Scholar
Hatakeyama, J. et al. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development141, 1671–1682 (2014). ArticleCASPubMed Google Scholar
Clark, B. S. et al. Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity and neurogenesis. Development139, 1599–1610 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, I. et al. Jam1a–Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling. Nature512, 319–323 (2014). ArticleCASPubMedPubMed Central Google Scholar
Rios, A. C., Serralbo, O., Salgado, D. & Marcelle, C. Neural crest regulates myogenesis through the transient activation of NOTCH. Nature473, 532–535 (2011). ArticleCASPubMed Google Scholar
Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol.12, 943–953 (2010). ArticleCASPubMed Google Scholar
Nelson, B. R., Hodge, R. D., Bedogni, F. & Hevner, R. F. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1–Notch signaling. J. Neurosci.33, 9122–9139 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bertet, C. et al. Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper. Cell158, 1173–1186 (2014). ArticleCASPubMedPubMed Central Google Scholar
Radtke, F. & Raj, K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer3, 756–767 (2003). ArticleCASPubMed Google Scholar
Lake, R. J., Tsai, P. F., Choi, I., Won, K. J. & Fan, H. Y. RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genet.10, e1004204 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Skalska, L. et al. Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation. EMBO J.34, 1889–1904 (2015). Together with reference 105, this paper demonstrates that large-scale chromatin changes occur at Notch-regulated enhancers, and together with references 112 and 113 shows that CSL binding is increased in Notch active cells. ArticleCASPubMedPubMed Central Google Scholar
Wang, H. et al. NOTCH1–RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc. Natl Acad. Sci. USA111, 705–710 (2014). Together with references 112 and 113, this reference demonstrates that CSL binding is dynamic, leading to a questioning of the original 'switch models', and, together with reference 104, also demonstrates large-scale changes in chromatin. ArticleCASPubMed Google Scholar
Yashiro-Ohtani, Y. et al. Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc. Natl Acad. Sci. USA111, E4946–E4953 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med.18, 298–301 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hass, M. R. et al. SpDamID: marking DNA bound by protein complexes identifies Notch-dimer responsive eEnhancers. Mol. Cell59, 685–697 (2015). ArticleCASPubMedPubMed Central Google Scholar
Kao, H. Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev.12, 2269–2277 (1998). ArticleCASPubMedPubMed Central Google Scholar
Collins, K. J., Yuan, Z. & Kovall, R. A. Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of Notch signaling. Structure22, 70–81 (2014). ArticleCASPubMed Google Scholar
VanderWielen, B. D., Yuan, Z., Friedmann, D. R. & Kovall, R. A. Transcriptional repression in the Notch pathway: thermodynamic characterization of CSL-MINT (Msx2-interacting nuclear target protein) complexes. J. Biol. Chem.286, 14892–14902 (2011). ArticleCASPubMedPubMed Central Google Scholar
Krejci, A. & Bray, S. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev.21, 1322–1327 (2007). This paper was the first to demonstrate that CSL binding is increased after Notch activation inDrosophilacells, confirmed by genome-wide studies by references 104, 105 and 113. ArticleCASPubMedPubMed Central Google Scholar
Castel, D. et al. Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev.27, 1059–1071 (2013). Together with references 104, 105 and 112, this reference demonstrates that CSL binding is dynamic, leading to a questioning of the original 'switch models'. ArticleCASPubMedPubMed Central Google Scholar
Housden, B. E. et al. Transcriptional dynamics elicited by a short pulse of notch activation involves feed-forward regulation by E(spl)/Hes genes. PLoS Genet.9, e1003162 (2013). ArticleCASPubMedPubMed Central Google Scholar
Procopio, M. G. et al. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat. Cell Biol.17, 1193–1204 (2015). ArticleCASPubMedPubMed Central Google Scholar
Braune, E. B. et al. Loss of CSL unlocks a hypoxic response and enhanced tumor growth potential in breast cancer cells. Stem Cell Rep.6, 643–651 (2016). ArticleCAS Google Scholar
Mulligan, P. et al. A SIRT1–LSD1 corepressor complex regulates Notch target gene expression and development. Mol. Cell42, 689–699 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kurth, P., Preiss, A., Kovall, R. A. & Maier, D. Molecular analysis of the notch repressor-complex in Drosophila: characterization of potential hairless binding sites on suppressor of hairless. PLoS ONE6, e27986 (2011). ArticleCASPubMedPubMed Central Google Scholar
Borggrefe, T. & Oswald, F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell. Mol. Life Sci.66, 1631–1646 (2009). ArticleCASPubMed Google Scholar
Bray, S. & Bernard, F. Notch targets and their regulation. Curr. Top. Dev. Biol.92, 253–275 (2010). ArticleCASPubMed Google Scholar
Cave, J. W., Loh, F., Surpris, J. W., Xia, L. & Caudy, M. A. A. DNA transcription code for cell-specific gene activation by Notch signaling. Curr. Biol.15, 94–104 (2005). ArticleCASPubMed Google Scholar
Neves, A., English, K. & Priess, J. R. Notch–GATA synergy promotes endoderm-specific expression of ref-1 in C. elegans. Development134, 4459–4468 (2007). ArticleCASPubMed Google Scholar
Barbarulo, A. et al. Notch3 and canonical NF-κB signaling pathways cooperatively regulate Foxp3 transcription. J. Immunol.186, 6199–6206 (2011). ArticleCASPubMed Google Scholar
Terriente-Felix, A. et al. Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme. Development140, 926–937 (2013). ArticleCASPubMedPubMed Central Google Scholar
Geimer Le Lay, A. S. et al. The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Sci. Signal.7, ra28 (2014). ArticlePubMedCAS Google Scholar
Kleinmann, E., Geimer Le Lay, A. S., Sellars, M., Kastner, P. & Chan, S. Ikaros represses the transcriptional response to Notch signaling in T-cell development. Mol. Cell. Biol.28, 7465–7475 (2008). ArticleCASPubMedPubMed Central Google Scholar
Witkowski, M. T. et al. Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia. Leukemia29, 1301–1311 (2015). ArticleCASPubMedPubMed Central Google Scholar
Kim, H. S., Jeong, H., Lim, S. O. & Jung, G. Snail inhibits Notch1 intracellular domain mediated transcriptional activation via competing with MAML1. Biochem. Biophys. Res. Commun.433, 6–10 (2013). ArticleCASPubMed Google Scholar
Gao, J. et al. RUNX3 directly interacts with intracellular domain of Notch1 and suppresses Notch signaling in hepatocellular carcinoma cells. Exp. Cell Res.316, 149–157 (2010). ArticleCASPubMed Google Scholar
Sakano, D. et al. BCL6 canalizes Notch-dependent transcription, excluding Mastermind-like1 from selected target genes during left-right patterning. Dev. Cell18, 450–462 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tiberi, L. et al. BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat. Neurosci.15, 1627–1635 (2012). ArticleCASPubMed Google Scholar
Dai, Q. et al. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family. Genes Dev.29, 48–62 (2013). ArticleCAS Google Scholar
Schwanbeck, R. The role of epigenetic mechanisms in Notch signaling during development. J. Cell. Physiol.230, 969–981 (2015). ArticleCASPubMed Google Scholar
Endo, K. et al. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat. Neurosci.15, 224–233 (2011). ArticlePubMedCAS Google Scholar
Farnsworth, D. R., Bayraktar, O. A. & Doe, C. Q. Aging neural progenitors lose competence to respond to mitogenic Notch signaling. Curr. Biol.25, 3058–3068 (2015). This is an example illustrating how the presence of specific transcription factors can change a cell's response to Notch. ArticleCASPubMedPubMed Central Google Scholar
Felician, G. et al. Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ. Res.115, 636–649 (2014). ArticleCASPubMed Google Scholar
Martinez, A. M. et al. Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nat. Genet.41, 1076–1082 (2009). ArticleCASPubMed Google Scholar
Blokzijl, A. et al. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol.163, 723–728 (2003). ArticleCASPubMedPubMed Central Google Scholar
Manderfield, L. J. et al. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest. Development142, 2962–2971 (2015). CASPubMedPubMed Central Google Scholar
O'Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med.204, 1813–1824 (2007). ArticleCASPubMedPubMed Central Google Scholar
Oberg, C. et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J. Biol. Chem.276, 35847–35853 (2001). ArticleCASPubMed Google Scholar
Fryer, C. J., White, J. B. & Jones, K. A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell16, 509–520 (2004). ArticleCASPubMed Google Scholar
Kourtis, N., Strikoudis, A. & Aifantis, I. Emerging roles for the FBXW7 ubiquitin ligase in leukemia and beyond. Curr. Opin. Cell Biol.37, 28–34 (2015). ArticleCASPubMedPubMed Central Google Scholar
Davis, M. A. et al. The SCF-Fbw7 ubiquitin ligase degrades MED13 and MED13L and regulates CDK8 module association with Mediator. Genes Dev.27, 151–156 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hoeck, J. D. et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat. Neurosci.13, 1365–1372 (2010). ArticleCASPubMed Google Scholar
Tetzlaff, M. T. et al. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl Acad. Sci. USA101, 3338–3345 (2004). ArticleCASPubMedPubMed Central Google Scholar
Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature473, 234–238 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hein, K. et al. Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response. Sci. Signal.8, ra30 (2015). ArticlePubMedCAS Google Scholar
Zheng, X. et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl Acad. Sci. USA105, 3368–3373 (2008). ArticleCASPubMedPubMed Central Google Scholar
Espinosa, L., Ingles-Esteve, J., Aguilera, C. & Bigas, A. Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem.278, 32227–32235 (2003). ArticleCASPubMed Google Scholar
Song, J., Park, S., Kim, M. & Shin, I. Down-regulation of Notch-dependent transcription by Akt in vitro. FEBS Lett.582, 1693–1699 (2008). ArticleCASPubMed Google Scholar
Jung, J. G. et al. Notch3 interactome analysis identified WWP2 as a negative regulator of Notch3 signaling in ovarian cancer. PLoS Genet.10, e1004751 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Ishitani, T. et al. Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nat. Cell Biol.12, 278–285 (2010). ArticleCASPubMed Google Scholar
Fernandez-Martinez, J. et al. Attenuation of Notch signalling by the Down-syndrome-associated kinase DYRK1A. J. Cell Sci.122, 1574–1583 (2009). ArticleCASPubMed Google Scholar
Borggrefe, T. et al. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochim. Biophys. Acta1863, 303–313 (2016). ArticleCASPubMed Google Scholar
Yatim, A. et al. NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol. Cell48, 445–458 (2012). ArticleCASPubMedPubMed Central Google Scholar
Fischer, A. & Gessler, M. Delta–Notch — and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res.35, 4583–4596 (2007). ArticleCASPubMedPubMed Central Google Scholar
Eddison, M., Le Roux, I. & Lewis, J. Notch signaling in the development of the inner ear: lessons from Drosophila. Proc. Natl Acad. Sci. USA97, 11692–11699 (2000). ArticleCASPubMedPubMed Central Google Scholar
Djiane, A. et al. Dissecting the mechanisms of Notch induced hyperplasia. EMBO J.32, 60–71 (2013). ArticleCASPubMed Google Scholar
Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med.13, 1203–1210 (2007). This paper uncovered an indirect regulation of PTEN by HES genes in T-ALL. ArticleCASPubMedPubMed Central Google Scholar
Serra, H. et al. PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat. Commun.6, 7935 (2015). In contrast to reference 161, this paper shows that PTEN is positively regulated by Notch activation in stalk cells. ArticleCASPubMedPubMed Central Google Scholar
Sundaram, M. V. The love–hate relationship between Ras and Notch. Genes Dev.19, 1825–1839 (2005). ArticleCASPubMed Google Scholar
Flores, G. V. et al. Combinatorial signaling in the specification of unique cell fates. Cell103, 75–85 (2000). This is a good example of signals being integrated through a common enhancer. ArticleCASPubMed Google Scholar
Doroquez, D. B. & Rebay, I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit. Rev. Biochem. Mol. Biol.41, 339–385 (2006). ArticleCASPubMed Google Scholar
Yoo, A. S., Bais, C. & Greenwald, I. Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science303, 663–666 (2004). ArticleCASPubMed Google Scholar
Lien, W. H. & Fuchs, E. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes Dev.28, 1517–1532 (2014). ArticleCASPubMedPubMed Central Google Scholar
Cordle, J. et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch _trans_-activation and _cis_-inhibition. Nat. Struct. Mol. Biol.15, 849–857 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kovall, R. A. & Blacklow, S. C. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Top. Dev. Biol.92, 31–71 (2010). ArticleCASPubMed Google Scholar
Nam, Y., Sliz, P., Song, L., Aster, J. C. & Blacklow, S. C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell124, 973–983 (2006). ArticleCASPubMed Google Scholar
Wilson, J. J. & Kovall, R. A. Crystal structure of the CSL–Notch–Mastermind ternary complex bound to DNA. Cell124, 985–996 (2006). Together with reference 172, this paper made a key contribution by revealing how NICD binds to CSL and forms an interface that recruits MAM. This led to the design of inhibitors. ArticleCASPubMed Google Scholar
Lin, S. et al. DDX5 is a positive regulator of oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia. Oncogene32, 4845–4853 (2013). ArticleCASPubMed Google Scholar
Jung, C., Mittler, G., Oswald, F. & Borggrefe, T. RNA helicase Ddx5 and the noncoding RNA SRA act as coactivators in the Notch signaling pathway. Biochim. Biophys. Acta1833, 1180–1189 (2013). ArticleCASPubMed Google Scholar
Wang, H., Zang, C., Liu, X. S. & Aster, J. C. The role of Notch receptors in transcriptional regulation. J. Cell. Physiol.230, 982–988 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lee, M. C. & Spradling, A. C. The progenitor state is maintained by lysine-specific demethylase 1-mediated epigenetic plasticity during Drosophila follicle cell development. Genes Dev.28, 2739–2749 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Liefke, R. et al. Histone demethylase KDM5A is an integral part of the core Notch–RBP-J repressor complex. Genes Dev.24, 590–601 (2010). ArticleCASPubMedPubMed Central Google Scholar
Maier, D. Hairless: the ignored antagonist of the Notch signalling pathway. Hereditas143, 212–221 (2006). ArticlePubMed Google Scholar
Rayon, T. et al. Notch and Hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev. Cell30, 410–422 (2014). ArticleCASPubMedPubMed Central Google Scholar
Sacilotto, N. et al. Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. Proc. Natl Acad. Sci. USA110, 11893–11898 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Arribillaga, E. et al. Bmi1 regulates murine intestinal stem cell proliferation and self-renewal downstream of Notch. Development142, 41–50 (2015). ArticleCASPubMed Google Scholar