Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell136, 731–745 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jackson, R. J., Hellen, C. U. T. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol.11, 113–127 (2010). ArticleCASPubMedPubMed Central Google Scholar
Topisirovic, I., Svitkin, Y. V., Sonenberg, N. & Shatkin, A. J. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip. Rev. RNA2, 277–298 (2011). ArticleCASPubMed Google Scholar
Pichon, X. et al. RNA binding protein/RNA element interactions and the control of translation. Curr. Protein Pept. Sci.13, 294–304 (2012). ArticleCASPubMedPubMed Central Google Scholar
Manning, K. S. & Cooper, T. A. The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol.18, 102–114 (2016). ArticleCASPubMedPubMed Central Google Scholar
Pesole, G. et al. Structural and functional features of eukaryotic mRNA untranslated regions. Gene276, 73–81 (2001). ArticleCASPubMed Google Scholar
Mazumder, B., Seshadri, V. & Fox, P. L. Translational control by the 3′-UTR: the ends specify the means. Trends Biochem. Sci.28, 91–98 (2003). ArticleCASPubMed Google Scholar
Lynch, M., Scofield, D. G. & Hong, X. The evolution of transcription-initiation sites. Mol. Biol. Evol.22, 1137–1146 (2005). ArticleCASPubMed Google Scholar
Hinnebusch, A. G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem.83, 779–812 (2014). ArticleCASPubMed Google Scholar
Hinnebusch, A. G., Ivanov, I. P. & Sonenberg, N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science352, 1413–1416 (2016). ArticleCASPubMedPubMed Central Google Scholar
Calvo, S. E., Pagliarini, D. J. & Mootha, V. K. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc. Natl Acad. Sci. USA106, 7507–7512 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ferreira, J. P., Overton, K. W. & Wang, C. L. Tuning gene expression with synthetic upstream open reading frames. Proc. Natl Acad. Sci. USA110, 11284–11289 (2013). ArticleCASPubMedPubMed Central Google Scholar
Somers, J., Pöyry, T. & Willis, A. E. A perspective on mammalian upstream open reading frame function. Int. J. Biochem. Cell Biol.45, 1690–1700 (2013). ArticleCASPubMedPubMed Central Google Scholar
Araujo, P. R. et al. Before it gets started: regulating translation at the 5′ UTR. Comp. Funct. Genomics2012, 1–8 (2012). ArticleCAS Google Scholar
Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell44, 283–292 (1986). ArticleCASPubMed Google Scholar
Noderer, W. L. et al. Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol. Syst. Biol.10, 1–14 (2014). ArticleCAS Google Scholar
Mathews, M. B., Sonenberg, N. & Hershey, J. W. B. Origins and principles of translational control. Cold Spring Harbor Monogr. Ser.48, 1–40 (2007). CAS Google Scholar
Schott, J. et al. Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLOS Genet.10, e1004368 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hernández, G., Altmann, M. & Lasko, P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem. Sci.35, 63–73 (2010). ArticleCASPubMed Google Scholar
Hernandez, G., Osnaya, V. G., Garcia, A. & Velasco, M. X. Evolution of the Protein Synthesis Machinery and its Regulation (eds Hernández, G. & Jagus, R.) 81–107 (Springer Int. Pub. 2016). Book Google Scholar
Mignone, F., Gissi, C., Liuni, S. & Pesole, G. Untranslated regions of mRNAs. Genome Biol.3, 4.1–4.10 (2002). Article Google Scholar
Jan, C. H., Friedman, R. C., Ruby, J. G. & Bartel, D. P. Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature469, 97–101 (2011). ArticleCASPubMed Google Scholar
Pelletier, J. & Sonenberg, N. Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell40, 515–526 (1985). This is one of the first studies to show a role for a 5′ UTR RNA secondary structure in influencing mRNA translation. ArticleCASPubMed Google Scholar
Manzella, J. M. & Blackshear, P. J. Regulation of rat ornithine decarboxylase mRNA translation by its 5′-untranslated region. J. Biol. Chem.265, 11817–11822 (1990). CASPubMed Google Scholar
Taliaferro, J. M. et al. RNA sequence context effects measured in vitro predict in vivo protein binding and regulation. Mol. Cell64, 294–306 (2016). ArticleCASPubMedPubMed Central Google Scholar
Montoya, J., Ojala, D. & Attardi, G. Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature290, 465–470 (1981). ArticleCASPubMed Google Scholar
Haimov, O., Sinvani, H. & Dikstein, R. Cap-dependent, scanning-free translation initiation mechanisms. Biochim. Biophys. Acta1849, 1313–1318 (2015). ArticleCASPubMed Google Scholar
Hentze, M. W. et al. Identification of the iron responsive element for the translational regulation of human ferritin mRNA. Science238, 1570–1573 (1987). ArticleCASPubMed Google Scholar
Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell3, 1–18 (2017). Google Scholar
Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J.13, 3882–3891 (1994). ArticleCASPubMedPubMed Central Google Scholar
Muckenthaler, M., Gray, N. K. & Hentze, M. W. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell2, 383–388 (1998). ArticleCASPubMed Google Scholar
Babendure, J. R., Babendure, J. L., Ding, J.-H. & Tsien, R. Y. Control of mammalian translation by mRNA structure near caps. RNA12, 851–861 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kozak, M. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl Acad. Sci. USA83, 2850–2854 (1986). ArticleCASPubMedPubMed Central Google Scholar
Parsyan, A. et al. mRNA helicases: the tacticians of translational control. Nat. Rev. Mol. Cell Biol.12, 235–245 (2011). ArticleCASPubMed Google Scholar
Wolfe, A. L. et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature513, 65–70 (2014). Ribosome profiling in cancer cells following eIF4A perturbation identifies stable RG4 structures in the 5′ UTR in eIF4A-sensitive target mRNAs. ArticleCASPubMedPubMed Central Google Scholar
Rubio, C. A. et al. Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation. Genome Biol.15, 1–19 (2014). ArticleCAS Google Scholar
Iwasaki, S., Floor, S. N. & Ingolia, N. T. Rocaglates convert DEAD-box protein eIF4A into a sequence-selective translational repressor. Nature534, 558–561 (2016). ArticleCASPubMedPubMed Central Google Scholar
Özes, A. R., Feoktistova, K., Avanzino, B. C. & Fraser, C. S. Duplex unwinding and ATPase activities of the DEAD-box helicase eIF4A are coupled by eIF4G and eIF4B. J. Mol. Biol.412, 674–687 (2011). ArticleCASPubMedPubMed Central Google Scholar
Dmitriev, S. E. et al. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5′ untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated. Mol. Cell. Biol.27, 4685–4697 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bordeleau, M. E. et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J. Clin. Invest.118, 2651–2660 (2008). CASPubMedPubMed Central Google Scholar
Sadlish, H. et al. Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chem. Biol.8, 1519–1527 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chu, J. & Pelletier, J. Targeting the eIF4A RNA helicase as an anti-neoplastic approach. Biochim. Biophys. Acta1849, 781–791 (2014). ArticleCASPubMed Google Scholar
Gandin, V. et al. NanoCAGE reveals 5′ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs. Genome Res.26, 636–648 (2016). ArticleCASPubMedPubMed Central Google Scholar
Modelska, A. et al. The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death Dis.6, e1603 (2015). ArticleCASPubMedPubMed Central Google Scholar
Sen, N. D., Zhou, F., Ingolia, N. T. & Hinnebusch, A. G. Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Res.25, 1196–1205 (2015). ArticleCASPubMedPubMed Central Google Scholar
Pisareva, V. P., Pisarev, A. V., Komar, A. A., Hellen, C. U. T. & Pestova, T. V. Translation initiation on mammalian mRNAs with structured 5′UTRs requires DexH-box protein DHX29. Cell135, 1237–1250 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sen, N. D., Zhou, F., Harris, M. S., Ingolia, N. T. & Hinnebusch, A. G. eIF4B stimulates translation of long mRNAs with structured 5′ UTRs and low closed-loop potential but weak dependence on eIF4G. Proc. Natl Acad. Sci. USA113, 10464–10472 (2016). ArticleCASPubMedPubMed Central Google Scholar
Jungfleisch, J. et al. A novel translational control mechanism involving RNA structures within coding sequences. Genome Res.27, 95–106 (2017). ArticleCASPubMedPubMed Central Google Scholar
Hänsel-Hertsch, R., Di Antonio, M. & Balasubramanian, S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol.5, 279–284 (2017). ArticleCAS Google Scholar
Cammas, A. & Millevoi, S. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res.45, 1584–1595 (2016). PubMed Central Google Scholar
Fay, M. M., Lyons, S. M. & Ivanov, P. RNA G-quadruplexes in biology: principles and molecular mechanisms. J. Mol. Biol.429, 2127–2147 (2017). ArticleCASPubMedPubMed Central Google Scholar
Bugaut, A. & Balasubramanian, S. 5′-UTR RNA G-quadruplexes: translation regulation and targeting. Nucleic Acids Res.40, 4727–4741 (2012). ArticleCASPubMedPubMed Central Google Scholar
Song, J., Perreault, J.-P., Topisirovic, I. & Richard, S. RNA G-quadruplexes and their potential regulatory roles in translation. Translation (Austin)4, e1244031 (2016). Google Scholar
Beaudoin, J. D. & Perreault, J. P. 5′-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res.38, 7022–7036 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bolduc, F., Garant, J. M., Allard, F. & Perreault, J. P. Irregular G-quadruplexes found in the untranslated regions of human mRNAs influence translation. J. Biol. Chem.291, 21751–21760 (2016). ArticleCASPubMedPubMed Central Google Scholar
Kumari, S., Bugaut, A. & Balasubramanian, S. Position and stability are determining factors for translation repression by an RNA G-quadruplex-forming sequence within the 5′ UTR of the NRAS proto-oncogene. Biochemistry47, 12664–12669 (2008). ArticleCASPubMed Google Scholar
Halder, K., Wieland, M. & Hartig, J. S. Predictable suppression of gene expression by 5′-UTR-based RNA quadruplexes. Nucleic Acids Res.37, 6811–6817 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kumari, S., Bugaut, A., Huppert, J. L. & Balasubramanian, S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol.3, 218–221 (2007). ArticleCASPubMedPubMed Central Google Scholar
Melko, M. & Bardoni, B. The role of G-quadruplex in RNA metabolism: involvement of FMRP and FMR2P. Biochimie92, 919–926 (2010). ArticleCASPubMed Google Scholar
Darnell, J. C. et al. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell107, 489–499 (2001). ArticleCASPubMed Google Scholar
Anderson, B. R. et al. Identification of consensus binding sites clarifies FMRP binding determinants. Nucleic Acids Res.44, 6649–6659 (2016). ArticleCASPubMedPubMed Central Google Scholar
Schaeffer, C. et al. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J.20, 4803–4813 (2001). ArticleCASPubMedPubMed Central Google Scholar
Didiot, M. C. et al. The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer. Nucleic Acids Res.36, 4902–4912 (2008). ArticleCASPubMedPubMed Central Google Scholar
Castets, M. et al. FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Hum. Mol. Genet.14, 835–844 (2005). ArticleCASPubMed Google Scholar
Chen, E., Sharma, M. R., Shi, X., Agrawal, R. K. & Joseph, S. Fragile X mental retardation protein regulates translation by binding directly to the ribosome. Mol. Cell54, 407–417 (2014). ArticleCASPubMedPubMed Central Google Scholar
Benhalevy, D. et al. The human CCHC-type zinc finger nucleic acid-binding protein binds G-rich elements in target mRNA coding sequences and promotes translation. Cell Rep.18, 2979–2990 (2017). ArticleCASPubMedPubMed Central Google Scholar
Ben-Asouli, Y., Banai, Y., Pel-Or, Y., Shir, A. & Kaempfer, R. Human interferon-γ mRNA autoregulates its translation through a pseudoknot that activates the interferon-inducible protein kinase PKR. Cell108, 221–232 (2002). ArticleCASPubMed Google Scholar
Cohen-Chalamish, S. et al. Dynamic refolding of IFN-γ mRNA enables it to function as PKR activator and translation template. Nat. Chem. Biol.5, 896–903 (2009). The studies in Refs82and83show how short helical segments assemble into a pseudoknot structure in a 5′ UTR, which is bound by PKR and activates it, lead to inhibition of translation initiation. ArticleCASPubMed Google Scholar
Nallagatla, S. R., Toroney, R. & Bevilacqua, P. C. Regulation of innate immunity through RNA structure and the protein kinase PKR. Curr. Opin. Struct. Biol.21, 119–127 (2011). ArticleCASPubMed Google Scholar
Yoon, J.-H., Abdelmohsen, K. & Gorospe, M. Posttranscriptional gene regulation by long noncoding RNA. J. Mol. Biol.425, 3723–3730 (2013). ArticleCASPubMed Google Scholar
Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature491, 454–457 (2012). ArticleCASPubMed Google Scholar
Brierley, I., Gilbert, R. J. & Pennell, S. RNA pseudoknots and the regulation of protein synthesis. Biochem. Soc. Trans.36, 684–689 (2008). ArticleCASPubMed Google Scholar
Osman, F., Jarrous, N., Ben-Asouli, Y. & Kaempfer, R. A _cis_-acting element in the 3′-untranslated region of human TNF-α mRNA renders splicing dependent on the activation of protein kinase PKR. Genes Dev.13, 3280–3293 (1999). ArticleCASPubMedPubMed Central Google Scholar
Namer, L. S. et al. An ancient pseudoknot in TNF-α pre-mRNA activates PKR, inducing eIF2α phosphorylation that potently enhances splicing. Cell Rep.20, 188–200 (2017). ArticleCASPubMed Google Scholar
Reenan, R. A. Molecular determinants and guided evolution of species-specific RNA editing. Nature434, 409–413 (2005). ArticleCASPubMed Google Scholar
Advani, V. M. & Dinman, J. D. Reprogramming the genetic code: the emerging role of ribosomal frameshifting in regulating cellular gene expression. Bioessays38, 21–26 (2016). ArticleCASPubMed Google Scholar
Brierley, I., Digard, P. & Inglis, S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell57, 537–547 (1989). ArticleCASPubMedPubMed Central Google Scholar
Baril, M., Dulude, D., Steinberg, S. V. & Brakier-Gingras, L. The frameshift stimulatory signal of human immunodeficiency virus type 1 group O is a pseudoknot. J. Mol. Biol.331, 571–583 (2003). ArticleCASPubMedPubMed Central Google Scholar
Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. C. & Brierley, I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature441, 244–247 (2006). ArticleCASPubMedPubMed Central Google Scholar
Belew, A. T., Advani, V. M. & Dinman, J. D. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast. Nucleic Acids Res.39, 2799–2808 (2011). ArticleCASPubMed Google Scholar
Holcik, M. & Sonenberg, N. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol.6, 318–327 (2005). ArticleCASPubMed Google Scholar
Qin, X. & Sarnow, P. Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J. Biol. Chem.279, 13721–13728 (2004). ArticleCASPubMed Google Scholar
Stoneley, M. & Willis, A. E. Cellular internal ribosome entry segments: structures, _trans_-acting factors and regulation of gene expression. Oncogene23, 3200–3207 (2004). ArticleCASPubMed Google Scholar
Spriggs, K. A., Stoneley, M., Bushell, M. & Willis, A. E. Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol. Cell100, 27–38 (2008). ArticleCASPubMed Google Scholar
Lacerda, R., Menezes, J. & Romão, L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell. Mol. Life Sci.74, 1659–1680 (2016). ArticleCASPubMed Google Scholar
Macejak, D. G. & Sarnow, P. Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature353, 90–94 (1991). This study presents the first description of IRES activity in the 5′ UTR of a cellular mRNA. ArticleCASPubMed Google Scholar
Thoma, C., Bergamini, G., Galy, B., Hundsdoerfer, P. & Hentze, M. W. Enhancement of IRES-mediated translation of the c-myc and BiP mRNAs by the poly(A) tail is independent of intact eIF4G and PABP. Mol. Cell15, 925–935 (2004). ArticleCASPubMed Google Scholar
Buchkovich, N. J., Yu, Y., Pierciey, F. J. & Alwine, J. C. Human cytomegalovirus induces the endoplasmic reticulum chaperone BiP through increased transcription and activation of translation by using the BiP internal ribosome entry site. J. Virol.84, 11479–11486 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mokrejs, M. et al. IRESite — a tool for the examination of viral and cellular internal ribosome entry sites. Nucleic Acids Res.38, D131–D136 (2010). ArticleCASPubMed Google Scholar
Baranick, B. T. et al. Splicing mediates the activity of four putative cellular internal ribosome entry sites. Proc. Natl Acad. Sci. USA105, 4733–4738 (2008). ArticleCASPubMedPubMed Central Google Scholar
Komar, A. A. & Hatzoglou, M. Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J. Biol. Chem.280, 23425–23428 (2005). ArticleCASPubMed Google Scholar
Komar, A. A. & Hatzoglou, M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle10, 229–240 (2011). ArticleCASPubMedPubMed Central Google Scholar
Baird, S. D., Lewis, S. M., Turcotte, M. & Holcik, M. A search for structurally similar cellular internal ribosome entry sites. Nucleic Acids Res.35, 4664–4677 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mitchell, S. A. et al. Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes Dev.19, 1556–1571 (2005). ArticleCASPubMedPubMed Central Google Scholar
King, H. A., Cobbold, L. C. & Willis, A. E. The role of IRES _trans_-acting factors in regulating translation initiation. Biochem. Soc. Trans.38, 1581–1586 (2010). ArticleCASPubMed Google Scholar
Faye, M. D. & Holcik, M. The role of IRES _trans_-acting factors in carcinogenesis. Biochim. Biophys. Acta1849, 887–897 (2014). ArticleCASPubMed Google Scholar
Lewis, S. M. & Holcik, M. For IRES _trans_-acting factors, it is all about location. Oncogene27, 1033–1035 (2008). ArticleCASPubMed Google Scholar
Cobbold, L. C. et al. Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interactions with and expression of PTB-1 and YB-1. Oncogene29, 2884–2891 (2010). ArticleCASPubMed Google Scholar
Mitchell, S. A., Spriggs, K. A., Coldwell, M. J., Jackson, R. J. & Willis, A. E. The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol. Cell11, 757–771 (2003). ArticleCASPubMed Google Scholar
Pickering, B. M., Mitchell, S. A., Evans, J. R. & Willis, A. E. Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulates its activity in vitro and in vivo. Nucleic Acids Res.31, 639–646 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pickering, B. M., Mitchell, S. A., Spriggs, K. A., Willis, A. E. & Stoneley, M. Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1. Mol. Cell. Biol.24, 5595–5605 (2004). ArticleCASPubMedPubMed Central Google Scholar
Le Quesne, J. P., Stoneley, M., Fraser, G. A. & Willis, A. E. Derivation of a structural model for the c-myc IRES. J. Mol. Biol.310, 111–126 (2001). ArticleCASPubMed Google Scholar
Chappell, S. A. et al. A mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: a novel mechanism of oncogene de-regulation. Oncogene19, 4437–4440 (2000). ArticleCASPubMed Google Scholar
Yaman, I. et al. The zipper model of translational control: a small upstream ORF is the switch that controls structural remodeling of an mRNA leader. Cell113, 519–531 (2003). ArticleCASPubMed Google Scholar
Fernandez, J. et al. Ribosome stalling regulates ires-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol. Cell17, 405–416 (2005). ArticleCASPubMed Google Scholar
Chen, T. M. et al. Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Res.42, 2932–2944 (2014). ArticleCASPubMed Google Scholar
Bastide, A. et al. An upstream open reading frame within an IRES controls expression of a specific VEGF-A isoform. Nucleic Acids Res.36, 2434–2445 (2008). ArticleCASPubMedPubMed Central Google Scholar
Fernandez, J. et al. Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2a phosphorylation and translation of a small upstream open reading frame. J. Biol. Chem.277, 2050–2058 (2002). ArticleCASPubMed Google Scholar
Morris, M. J., Negishi, Y., Pazsint, C., Schonhoft, J. D. & Basu, S. An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES. J. Am. Chem. Soc.132, 17831–17839 (2010). ArticleCASPubMed Google Scholar
Cammas, A. et al. Stabilization of the G-quadruplex at the VEGF IRES represses cap-independent translation. RNA Biol.12, 320–329 (2015). ArticlePubMedPubMed Central Google Scholar
Bonnal, S. et al. A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J. Biol. Chem.278, 39330–39336 (2003). ArticleCASPubMed Google Scholar
Bhattacharyya, D., Diamond, P. & Basu, S. An independently folding RNA G-quadruplex domain directly recruits the 40S ribosomal subunit. Biochemistry54, 1879–1885 (2015). ArticleCASPubMed Google Scholar
Xue, S. et al. RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation. Nature517, 33–38 (2015). The first targeted knockout of a cellular IRES in mice reveals a key role for IRES-driven translation of Hox mRNAsin vivoand identifies a newcis-regulatory element, the TIE, which blocks cap-dependent translation. ArticleCASPubMed Google Scholar
Landry, D. M., Hertz, M. I. & Thompson, S. R. RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs. Genes Dev.23, 2753–2764 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jack, K. et al. rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol. Cell44, 660–666 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kondrashov, N. et al. Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell145, 383–397 (2011). ArticleCASPubMedPubMed Central Google Scholar
Martineau, Y. et al. Internal ribosome entry site structural motifs conserved among mammalian fibroblast growth factor 1 alternatively spliced mRNAs. Mol. Cell. Biol.24, 7622–7635 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cheng, C. Y. et al. Consistent global structures of complex RNA states through multidimensional chemical mapping. eLife4, 1–38 (2015). CAS Google Scholar
Créancier, L., Morello, D., Mercier, P. & Prats, A. C. Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. J. Cell Biol.150, 275–281 (2000). ArticlePubMedPubMed Central Google Scholar
Créancier, L., Mercier, P., Prats, A., Morello, D. & Cre, L. c-Myc internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol. Cell. Biol.21, 1833–1840 (2001). ArticlePubMedPubMed Central Google Scholar
Morfoisse, F. et al. Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1a-independent translation-mediated mechanism. Cell Rep.6, 155–167 (2014). ArticleCASPubMed Google Scholar
Audigier, S. et al. Potent activation of FGF-2 IRES-dependent mechanism of translation during brain development. RNA14, 1852–1864 (2008). ArticleCASPubMedPubMed Central Google Scholar
Conte, C. et al. FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1α. PLOS ONE3, e3078 (2008). ArticleCASPubMedPubMed Central Google Scholar
Weingarten-Gabbay, S. et al. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science351, 1–24 (2016). This study reports the first genome-wide approach to identify novel IRES-like elementsin vivoand finds short poly(U) sequences and small structured elements that harbour IRES activity. ArticleCAS Google Scholar
Lee, A. S. Y., Kranzusch, P. J. & Cate, J. H. eIF3 targets cell-proliferation messenger RNAs for translational activation or repression. Nature522, 111–114 (2015). This study identifies a novel role for eIF3 in interacting with RNA stem–loop structures in the 5′ UTR of mRNAs to directly recruit the ribosome. ArticleCASPubMedPubMed Central Google Scholar
Blau, L. et al. Aberrant expression of c-Jun in glioblastoma by internal ribosome entry site (IRES)-mediated translational activation. Proc. Natl Acad. Sci. USA109, E2875–E2884 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lee, A. S., Kranzusch, P. J., Doudna, J. A. & Cate, J. H. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature536, 96–99 (2016). ArticleCASPubMedPubMed Central Google Scholar
Zhao, B. S., Roundtree, I. A. & He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol.18, 31–42 (2016). ArticleCASPubMedPubMed Central Google Scholar
Harcourt, E. M., Kietrys, A. M. & Kool, E. T. Chemical and structural effects of base modifications in messenger RNA. Nature541, 339–346 (2017). ArticleCASPubMedPubMed Central Google Scholar
Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature485, 201–206 (2012). ArticleCASPubMed Google Scholar
Zhou, J. et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature526, 591–594 (2015). Refs151and152demonstrate that m6A promotes cap-independent mRNA translation initiation, which is mediated by direct eIF3 recruitment. They also show that m6A levels in 5′ UTRs are increased during stress. ArticleCASPubMedPubMed Central Google Scholar
Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature518, 560–564 (2015). This study reports that the incorporation of m6A into a hairpin modulates the local secondary structure of RNA ('m6A switch'), thereby facilitating the binding of the indirect m6A reader hnRNPC. ArticleCASPubMedPubMed Central Google Scholar
Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature519, 486–490 (2015). This paper presents the first globalin vivoRNA structure probing method, icSHAPE, and connects m6A modifications with destabilization of local RNA structure across the transcriptome. ArticleCASPubMedPubMed Central Google Scholar
Schwartz, S. et al. High-Resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell155, 1409–1421 (2013). ArticleCASPubMedPubMed Central Google Scholar
Roost, C. et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc.137, 2107–2115 (2015). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature505, 117–120 (2014). ArticleCASPubMed Google Scholar
Lin, S., Choe, J., Du, P., Triboulet, R. & Gregory, R. I. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell62, 335–345 (2015). ArticleCAS Google Scholar
Delatte, B. et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science351, 282–285 (2016). ArticleCASPubMed Google Scholar
Slobodin, B. et al. Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell169, 326–337 (2017). ArticleCASPubMedPubMed Central Google Scholar
Choi, J. et al. N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol.23, 110–115 (2016). ArticleCASPubMedPubMed Central Google Scholar
Zhou, C. et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep.20, 2262–2276 (2017). ArticleCASPubMedPubMed Central Google Scholar
Mortimer, S. A., Kidwell, M. A. & Doudna, J. A. Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet.15, 469–479 (2014). ArticleCASPubMed Google Scholar
Kwok, C. K., Tang, Y., Assmann, S. M. & Bevilacqua, P. C. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci.40, 221–232 (2015). ArticleCASPubMed Google Scholar
Kubota, M., Tran, C. & Spitale, R. C. Progress and challenges for chemical probing of RNA structure inside living cells. Nat. Chem. Biol.11, 933–941 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bevilacqua, P. C., Ritchey, L. E., Su, Z. & Assmann, S. M. Genome-wide analysis of RNA secondary structure. Annu. Rev. Genet.50, 235–266 (2016). ArticleCASPubMed Google Scholar
Incarnato, D. & Oliviero, S. The RNA epistructurome: uncovering RNA function by studying structure and post-transcriptional modifications. Trends Biotechnol.35, 318–333 (2017). ArticleCASPubMed Google Scholar
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature505, 701–705 (2014). ArticleCASPubMed Google Scholar
Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature505, 696–700 (2014). Refs172and173introduce the first methods forin vivoDMS-based chemical modification of accessible RNA nucleotides to globally probe RNA secondary structure. ArticleCASPubMed Google Scholar
Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature467, 103–107 (2010). ArticleCASPubMed Google Scholar
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods11, 959–965 (2014). ArticleCASPubMedPubMed Central Google Scholar
Fang, R., Moss, W. N., Rutenberg-Schoenberg, M. & Simon, M. D. Probing xist RNA structure in cells using targeted structure-seq. PLoS Genet.11, e1005668 (2015). ArticleCASPubMedPubMed Central Google Scholar
Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods14, 75–82 (2016). At the current vanguard ofin vivochemical mapping techniques, DMS–MaPseq leverages several methodological advances to pilot applications to probe low-abundance mRNAs and pre-mRNAs and to derive structural models that inform compensatory mutagenesis experiments. ArticleCASPubMedPubMed Central Google Scholar
Sergiev, P. V., Dontsova, O. A. & Bogdanov, A. A. Chemical methods for the structural study of the ribosome: judgment day. Mol. Biol.35, 472–495 (2001). ArticleCAS Google Scholar
Kladwang, W., VanLang, C. C., Cordero, P. & Das, R. A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat. Chem.3, 954–962 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tian, S., Cordero, P., Kladwang, W. & Das, R. High-throughput mutate-map-rescue evaluates SHAPE-directed RNA structure and uncovers excited states. RNA20, 1815–1826 (2014). ArticleCASPubMedPubMed Central Google Scholar
Tian, S. & Das, R. RNA structure through multidimensional chemical mapping. Q. Rev. Biophys.49, 1–30 (2016). Article Google Scholar
Smola, M. J., Calabrese, J. M. & Weeks, K. M. Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry54, 6867–6875 (2015). ArticleCASPubMed Google Scholar
Cheng, C., Kladwang, W., Yesselman, J. & Das, R. RNA structure inference through chemical mapping after accidental or intentional mutations. Proc. Natl Acad. Sci. USA114, 9876–9881 (2017). ArticleCASPubMedPubMed Central Google Scholar
Risca, V. I., Denny, S. K., Straight, A. F. & Greenleaf, W. J. Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature541, 237–241 (2016). ArticleCASPubMedPubMed Central Google Scholar
Burkhardt, D. H. et al. Operon mRNAs are organized into ORF-centric structures that predict translation efficiency. eLife6, e22037 (2017). ArticlePubMedPubMed Central Google Scholar
Dreyfuss, G., Kim, V. N., Kataoka, N. & Medical, H. H. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol.3, 195–205 (2002). ArticleCASPubMed Google Scholar
May, J., Johnson, P., Saleem, H. & Simon, A. E. A sequence-independent, unstructured IRES is responsible for internal expression of the coat protein of Turnip Crinkle Virus. J. Virol.91, e02421–e02416 (2017). ArticleCASPubMedPubMed Central Google Scholar
Clements, J., Eddy, S. R. & Rivas, E. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods14, 45–48 (2017). ArticleCASPubMed Google Scholar
Pedersen, J. S. et al. Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput. Biol.2, 251–262 (2006). ArticleCAS Google Scholar
Parker, B. J. et al. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. Genome Res.21, 1929–1943 (2011). ArticleCASPubMedPubMed Central Google Scholar
Goodarzi, H. et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature485, 264–268 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rousseau, D., Kaspar, R., Rosenwald, I., Gehrke, L. & Sonenberg, N. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl Acad. Sci. USA93, 1065–1070 (1996). ArticleCASPubMedPubMed Central Google Scholar
Hinnebusch, A. G. Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation. Trends Biochem. Sci.1348, 1–23 (2017). Google Scholar
Martin, F. et al. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation. Nat. Commun.7, 1–7 (2016). Google Scholar
Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science351, 969–972 (2016). ArticleCASPubMed Google Scholar
Eddy, S. R. Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu. Rev. Biophys.43, 433–456 (2014). ArticleCASPubMedPubMed Central Google Scholar
Majumder, M. et al. The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol. Cell. Biol.29, 2899–2912 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev.29, 2037–2053 (2015). ArticleCASPubMedPubMed Central Google Scholar