Argonaute proteins: key players in RNA silencing (original) (raw)
Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J.17, 1799–1809 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development124, 2463–2476 (1997). References 1–3 are seminal works that originally described the Argonaute gene family. CASPubMed Google Scholar
Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A. & Voinnet, O. Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nature Genet.39, 848–856 (2007). ArticleCASPubMed Google Scholar
Zaratiegui, M., Irvine, D. V. & Martienssen, R. A. Noncoding RNAs and gene silencing. Cell128, 763–776 (2007). ArticleCASPubMed Google Scholar
Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell127, 747–757 (2006). The first exhaustive study of Argonaute genes inC. elegans. Describes a class of Argonaute proteins that do not contain the important amino acids for endonuclease activity but are still important for the RNAi pathway. ArticleCASPubMed Google Scholar
Cerutti, H. & Casas-Mollano, J. A. On the origin and functions of RNA-mediated silencing: from protists to man. Curr. Genet.50, 81–99 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ullu, E., Tschudi, C. & Chakraborty, T. RNA interference in protozoan parasites. Cell. Microbiol.6, 509–519 (2004). ArticleCASPubMed Google Scholar
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science297, 2232–2237 (2002). ArticleCASPubMed Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science297, 1833–1837 (2002). ArticleCASPubMed Google Scholar
Sigova, A., Rhind, N. & Zamore, P. D. A single Argonaute protein mediates both transcriptional and posttranscriptional silencing in Schizosaccharomyces pombe. Genes Dev.18, 2359–2367 (2004). ArticleCASPubMedPubMed Central Google Scholar
Yuan, Y. R. et al. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell19, 405–419 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ma, J. B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature434, 666–670 (2005). Describes the crystal structure of a PIWI domain in complex with RNA. ArticleCASPubMedPubMed Central Google Scholar
Song, J. J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Struct. Biol.10, 1026–1032 (2003). ArticleCASPubMed Google Scholar
Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature426, 468–474 (2003). ArticlePubMedCAS Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature426, 465–469 (2003). ArticleCASPubMed Google Scholar
Ma, J. B., Ye, K. & Patel, D. J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature429, 318–322 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nature Struct. Mol. Biol.11, 576–577 (2004). References 18 and 19 report the crystal structure of the PAZ domain in complex with nucleic acids (reference 19) and mini-siRNA (reference 18). ArticleCAS Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J.23, 4727–4737 (2004). ArticleCASPubMedPubMed Central Google Scholar
Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437 (2004). The first crystal structure of a complete Argonaute protein, revealing its function as the catalytic component of RISC. ArticleCASPubMed Google Scholar
Tolia, N. H. & Joshua-Tor, L. Slicer and the argonautes. Nature Chem. Biol.3, 36–43 (2007). ArticleCAS Google Scholar
Schwarz, D. S., Tomari, Y. & Zamore, P. D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol.14, 787–791 (2004). ArticleCASPubMed Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature434, 663–666 (2005). Describes the crystal structure of a PIWI domain in complex with RNA. ArticleCASPubMedPubMed Central Google Scholar
Nykanen, A., Haley, B. & Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell107, 309–321 (2001). ArticleCASPubMed Google Scholar
Kiriakidou, M. et al. An mRNA m(7)G cap binding-like motif within human Ago2 represses translation. Cell129, 1141–1151 (2007). ArticleCASPubMed Google Scholar
Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol.11, 599–606 (2004). ArticleCAS Google Scholar
Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell115, 787–798 (2003). ArticleCASPubMed Google Scholar
Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev.19, 2837–2848 (2005). ArticleCASPubMedPubMed Central Google Scholar
Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Struct. Mol. Biol.12, 340–349 (2005). References 32 and 33 describe the minimal RISC: a recombinant Argonaute (human AGO2) associated with siRNA is sufficient for slicer activity. ArticleCAS Google Scholar
Irvine, D. V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science313, 1134–1137 (2006). ArticleCASPubMed Google Scholar
Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell123, 607–620 (2005). Together with reference 32, describes the contribution of the enzymatic function of Argonaute in the assembly of RISC by cleaving the passenger strand of the siRNA duplex. ArticleCASPubMed Google Scholar
Leuschner, P. J., Ameres, S. L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep.7, 314–320 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hutvágner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science297, 2056–2060 (2002). ArticlePubMedCAS Google Scholar
Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science315, 1587–1590 (2007). ArticleCASPubMed Google Scholar
Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell128, 1089–1103 (2007). ArticleCASPubMed Google Scholar
Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell15, 185–197 (2004). This study, together with reference 41, clearly links the slicing activity to Argonautes. It demonstrates that human AGO2 is the only Argonaute in human carrying the nuclease activity, whereas AGO1–AGO4 can bind miRNAs. ArticleCASPubMed Google Scholar
Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science305, 1437–1441 (2004). Demonstrates that disruption of specific amino acids found in the cryptic ribonuclease H domain abrogates RISC activity. Also shows that AGO2 is essential for mouse development. ArticleCASPubMed Google Scholar
Höck, J. et al. Proteomic and functional analysis of Argonaute-containing mRNA–protein complexes in human cells. EMBO Rep.8, 1052–1060 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Tahbaz, N. et al. Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep.5, 189–194 (2004). ArticleCASPubMedPubMed Central Google Scholar
Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev.20, 1885–1898 (2006). ArticleCASPubMedPubMed Central Google Scholar
Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nature Struct. Mol. Biol.14, 897–903 (2007). ArticleCAS Google Scholar
El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev.21, 2539–2544 (2007). ArticleCASPubMedPubMed Central Google Scholar
Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol.3, e236 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Saito, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Processing of pre-microRNAs by the Dicer-1–Loquacious complex in Drosophila cells. PLoS Biol.3, e235 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science301, 1921–1925 (2003). ArticleCASPubMed Google Scholar
Tomari, Y., Matranga, C., Haley, B., Martinez, N. & Zamore, P. D. A protein sensor for siRNA asymmetry. Science306, 1377–1380 (2004). ArticleCASPubMed Google Scholar
Forstemann, K., Horwich, M. D., Wee, L., Tomari, Y. & Zamore, P. D. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell130, 287–297 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Steiner, F. A. et al. Structural features of small RNA precursors determine Argonaute loading in Caenorhabditis elegans. Nature Struct. Mol. Biol.14, 927–933 (2007). ArticleCAS Google Scholar
Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell115, 199–208 (2003). ArticleCASPubMed Google Scholar
Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell115, 209–216 (2003). ArticleCASPubMed Google Scholar
Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev.18, 1655–1666 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell99, 123–132 (1999). The first report that associated an Argonaute gene with a small non-coding RNA pathway, RNAi. ArticleCASPubMed Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). Identifies the first Argonaute genes that are required for the microRNA pathway. ArticleCASPubMed Google Scholar
Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature403, 901–906 (2000). ArticleCASPubMed Google Scholar
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993). ArticleCASPubMed Google Scholar
Sijen, T., Steiner, F. A., Thijssen, K. L. & Plasterk, R. H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science315, 244–247 (2007). ArticleCASPubMed Google Scholar
Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science315, 241–244 (2007). ArticleCASPubMed Google Scholar
Vasudevan, S. & Steitz, J. A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell128, 1105–1118 (2007). ArticleCASPubMedPubMed Central Google Scholar
Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol.216, 671–680 (1999). ArticleCASPubMed Google Scholar
Wang, B., Love, T. M., Call, M. E., Doench, J. G. & Novina, C. D. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol. Cell22, 553–560 (2006). ArticleCASPubMed Google Scholar
Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl Acad. Sci. USA102, 16961–16966 (2005). ArticleCASPubMedPubMed Central Google Scholar
Pillai, R. S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science309, 1573–1576 (2005). Demonstrates that tethering Argonaute proteins to the 3′-UTR region of a mRNA can mimic miRNA translational inhibition, suggesting that miRNAs function to guide Argonautes to mRNAs. ArticleCASPubMed Google Scholar
Thermann, R. & Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature447, 875–878 (2007). ArticleCASPubMed Google Scholar
Chendrimada, T. P. et al. MicroRNA silencing through RISC recruitment of eIF6. Nature447, 823–828 (2007). ArticleCASPubMed Google Scholar
Kim, J. et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc. Natl Acad. Sci. USA101, 360–365 (2004). ArticleCASPubMed Google Scholar
Nelson, P. T., Hatzigeorgiou, A. G. & Mourelatos, Z. miRNP: mRNA association in polyribosomes in a human neuronal cell line. RNA10, 387–394 (2004). ArticleCASPubMedPubMed Central Google Scholar
Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol.13, 1108–1114 (2006). ArticleCAS Google Scholar
Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol.13, 1102–1107 (2006). ArticleCAS Google Scholar
Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell21, 533–542 (2006). ArticleCASPubMed Google Scholar
Pillai, R. S., Artus, C. G. & Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA10, 1518–1525 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell125, 1111–1124 (2006). ArticleCASPubMed Google Scholar
Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol.26, 2965–2975 (2006). ArticleCASPubMedPubMed Central Google Scholar
Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science312, 75–79 (2006). ArticleCASPubMed Google Scholar
Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–773 (2005). ArticleCASPubMed Google Scholar
Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science310, 1817–1821 (2005). ArticleCASPubMed Google Scholar
Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell122, 553–563 (2005). ArticleCASPubMed Google Scholar
Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev.20, 515–524 (2006). ArticleCASPubMed Google Scholar
Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell120, 623–634 (2005). ArticleCASPubMed Google Scholar
Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of Piwi family gene, is essential for spermatogenesis. Development131, 839–849 (2004). ArticleCASPubMed Google Scholar
Deng, W. & Lin, H. Miwi, a murine homolog of Piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell2, 819–830 (2002). ArticleCASPubMed Google Scholar
Cox, D. N., Chao, A. & Lin, H. Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development127, 503–514 (2000). CASPubMed Google Scholar
Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by Piwi are essential for stem cell self-renewal. Genes Dev.12, 3715–3727 (1998). ArticleCASPubMedPubMed Central Google Scholar
Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell12, 503–514 (2007). ArticleCASPubMed Google Scholar
Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev.20, 1709–1714 (2006). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev.20, 1732–1743 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science313, 363–367 (2006). ArticleCASPubMed Google Scholar
Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature442, 199–202 (2006). ArticlePubMed Google Scholar
Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature442, 203–207 (2006). ArticleCASPubMed Google Scholar
Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science313, 320–324 (2006). ArticleCASPubMed Google Scholar
Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev.20, 2214–2222 (2006). ArticleCASPubMedPubMed Central Google Scholar
Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell129, 69–82 (2007). ArticleCASPubMed Google Scholar
Pane, A., Wehr, K. & Schupbach, T. Zucchini and Squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev. Cell12, 851–862 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hiragami, K. & Festenstein, R. Heterochromatin protein 1: a pervasive controlling influence. Cell. Mol. Life Sci.62, 2711–2726 (2005). ArticleCASPubMed Google Scholar
Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet.36, 1174–1180 (2004). ArticleCASPubMed Google Scholar
Yin, H. & Lin, H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature450, 304–308 (2007). ArticleCASPubMed Google Scholar
Cerutti, L., Mian, N. & Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci.25, 481–482 (2000). ArticleCASPubMed Google Scholar
Jacobsen, S. E., Running, M. P. & Meyerowitz, E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development126, 5231–5243 (1999). CASPubMed Google Scholar
Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nature Struct. Mol. Biol.13, 1097–1101 (2006). ArticleCAS Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCASPubMed Google Scholar
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell130, 89–100 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.15, 2654–2659 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001). ArticlePubMed Google Scholar
Kirino, Y. & Mourelatos, Z. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nature Struct. Mol. Biol.14, 347–348 (2007). ArticleCAS Google Scholar
Ohara, T. et al. The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nature Struct. Mol. Biol.14, 349–350 (2007). ArticleCAS Google Scholar
Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev.21, 1603–1608 (2007). ArticleCASPubMedPubMed Central Google Scholar
Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol.17, 1265–1272 (2007). ArticleCASPubMed Google Scholar
Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol.288, 911–940 (1999). ArticleCASPubMed Google Scholar
Cogoni, C. & Macino, G. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc. Natl Acad. Sci. USA94, 10233–10238 (1997). ArticleCASPubMedPubMed Central Google Scholar
Catalanotto, C., Azzalin, G., Macino, G. & Cogoni, C. Gene silencing in worms and fungi. Nature404, 245 (2000). ArticleCASPubMed Google Scholar
Lee, D. W., Pratt, R. J., McLaughlin, M. & Aramayo, R. An Argonaute-like protein is required for meiotic silencing. Genetics164, 821–828 (2003). CASPubMedPubMed Central Google Scholar
Mochizuki, K., Fine, N. A., Fujisawa, T. & Gorovsky, M. A. Analysis of a Piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell110, 689–699 (2002). ArticleCASPubMed Google Scholar
Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell16, 69–79 (2004). ArticleCASPubMed Google Scholar
Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D. P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev.18, 1187–1197 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zilberman, D., Cao, X. & Jacobsen, S. E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science299, 716–719 (2003). ArticleCASPubMed Google Scholar
Zheng, X., Zhu, J., Kapoor, A. & Zhu, J. K. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J.26, 1691–1701 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hunter, C., Sun, H. & Poethig, R. S. The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr. Biol.13, 1734–1739 (2003). ArticleCASPubMed Google Scholar
Grishok, A., Sinskey, J. L. & Sharp, P. A. Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes Dev.19, 683–696 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tijsterman, M., Okihara, K. L., Thijssen, K. & Plasterk, R. H. PPW-1, a PAZ/PIWI protein required for efficient germline RNAi, is defective in a natural isolate of C. elegans. Curr. Biol.12, 1535–1540 (2002). ArticleCASPubMed Google Scholar
Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science293, 1146–1150 (2001). Reports the purification of the RNAi effector nuclease previously described in 2000, revealing Argonaute-2 in the complex. ArticleCASPubMed Google Scholar
Janowski, B. A. et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nature Struct. Mol. Biol.13, 787–792 (2006). ArticleCAS Google Scholar
Kim, D. H., Villeneuve, L. M., Morris, K. V. & Rossi, J. J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nature Struct. Mol. Biol.13, 793–797 (2006). ArticleCAS Google Scholar