Non-muscle myosin II takes centre stage in cell adhesion and migration (original) (raw)
Holmes, K. C. in Myosins (ed. Coluccio, L. M.) 35–54 (Springer, The Netherlands, 2007). Provides an in depth survey of selective myosin class members, including NM IIs. See also references 2, 3, 6, 7 and 9. Google Scholar
Mooseker, M. S. & Foth, B. J. in Myosins (ed. Coluccio, L. M.) 1–34 (Springer, The Netherlands, 2007). Google Scholar
El-Mezgueldi, M. & Bagshaw, C. R. in Myosins (ed. Coluccio, L. M.) 55–93 (Springer, The Netherlands, 2007). Google Scholar
Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature436, 1113–1118 (2005). CASPubMed Google Scholar
Odronitz, F. & Kollmar, M. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol.8, R196 (2007). PubMedPubMed Central Google Scholar
Cremo, C. R. & Hartshorne, D. J. in Myosins (ed. Coluccio, L. M.) 171–222 (Springer, The Netherlands, 2007). Google Scholar
Reggiani, C. & Bottinelli, R. in Myosins (ed. Coluccio, L. M.) 125–169 (Springer, The Netherlands, 2007). Google Scholar
Clark, K., Langeslag, M., Figdor, C. G. & van Leeuwen, F. N. Myosin II and mechanotransduction: a balancing act. Trends Cell Biol.17, 178–186 (2007). CASPubMed Google Scholar
Conti, M. A., Kawamoto, S. & Adelstein, R. S. in Myosins (ed. Coluccio, L. M.) 223–264 (Springer, The Netherlands, 2007). Google Scholar
Conti, M. A. & Adelstein, R. S. Nonmuscle myosin II moves in new directions. J. Cell Sci.121, 11–18 (2008). CASPubMed Google Scholar
Krendel, M. & Mooseker, M. S. Myosins: tails (and heads) of functional diversity. Physiology20, 239–251 (2005). CASPubMed Google Scholar
Swailes, N. T., Colegrave, M., Knight, P. J. & Peckham, M. Non-muscle myosins 2A and 2B drive changes in cell morphology that occur as myoblasts align and fuse. J. Cell Sci.119, 3561–3570 (2006). CASPubMed Google Scholar
Yuen, S. L., Ogut, O. & Brozovich, F. V. Nonmuscle myosin is regulated during smooth muscle contraction. Am. J. Physiol. Heart Circ. Physiol.297, H191–H199 (2009). CASPubMedPubMed Central Google Scholar
Morano, I. et al. Smooth-muscle contraction without smooth-muscle myosin. Nature Cell Biol.2, 371–375 (2000). The first demonstration that NM II can play a part in smooth muscle contraction. The authors make use of smooth muscle myosin knockout mice to study smooth muscle contraction and show that the sustained phase of contraction is due to NM II. See reference 13 for recent work in this area which suggests that NM IIB might contribute to the smooth muscle 'latch' state. CASPubMed Google Scholar
Niederman, R. & Pollard, T. D. Human platelet myosin. II. In vitro assembly and structure of myosin filaments. J. Cell Biol.67, 72–92 (1975). CASPubMed Google Scholar
Svitkina, T. M., Verkhovsky, A. B. & Borisy, G. G. Improved procedures for electron microscopic visualization of the cytoskeleton of cultured cells. J. Struct. Biol.115, 290–303 (1995). CASPubMed Google Scholar
Mansfield, S. G., al-Shirawi, D. Y., Ketchum, A. S., Newbern, E. C. & Kiehart, D. P. Molecular organization and alternative splicing in Zipper, the gene that encodes the Drosophila non-muscle myosin II heavy chain. J. Mol. Biol.255, 98–109 (1996). CASPubMed Google Scholar
Jana, S. S. et al. An alternatively spliced isoform of nonmuscle myosin II-C is not regulated by myosin light chain phosphorylation. J. Biol. Chem.284, 11563–11571 (2009). CASPubMedPubMed Central Google Scholar
Li, Y., Lalwani, A. K. & Mhatre, A. N. Alternative splice variants of MYH9. DNA Cell Biol.27, 117–125 (2008). CASPubMed Google Scholar
Maupin, P., Phillips, C. L., Adelstein, R. S. & Pollard, T. D. Differential localization of myosin-II isozymes in human cultured cells and blood cells. J. Cell Sci.107, 3077–3090 (1994). CASPubMed Google Scholar
Kolega, J. Cytoplasmic dynamics of myosin IIA and IIB: spatial 'sorting' of isoforms in locomoting cells. J. Cell Sci.111, 2085–2095 (1998). CASPubMed Google Scholar
Vicente-Manzanares, M., Zareno, J., Whitmore, L., Choi, C. K. & Horwitz, A. F. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol.176, 573–580 (2007). CASPubMedPubMed Central Google Scholar
Bao, J., Jana, S. S. & Adelstein, R. S. Vertebrate nonmuscle myosin II isoforms rescue small interfering RNA-induced defects in COS-7 cell cytokinesis. J. Biol. Chem.280, 19594–19599 (2005). CASPubMed Google Scholar
Golomb, E. et al. Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family. J. Biol. Chem.279, 2800–2808 (2004). CASPubMed Google Scholar
Kim, K. Y., Kovacs, M., Kawamoto, S., Sellers, J. R. & Adelstein, R. S. Disease-associated mutations and alternative splicing alter the enzymatic and motile activity of nonmuscle myosins II-B and II-C. J. Biol. Chem.280, 22769–22775 (2005). CASPubMed Google Scholar
Kovacs, M., Wang, F., Hu, A., Zhang, Y. & Sellers, J. R. Functional divergence of human cytoplasmic myosin II: kinetic characterization of the non-muscle IIA isoform. J. Biol. Chem.278, 38132–38140 (2003). CASPubMed Google Scholar
Wang, F. et al. Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance. J. Biol. Chem.278, 27439–27448 (2003). Together with reference 26, this paper details the differences in the kinetic properties of NM IIA and NM IIB. These studies provide a mechanistic framework for understanding the putativein vivofunction of two of the three NM II isoforms. CASPubMed Google Scholar
Kovacs, M., Thirumurugan, K., Knight, P. J. & Sellers, J. R. Load-dependent mechanism of nonmuscle myosin 2. Proc. Natl Acad. Sci. USA104, 9994–9999 (2007). CASPubMedPubMed Central Google Scholar
Bao, J., Ma, X., Liu, C. & Adelstein, R. S. Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice. J. Biol. Chem.282, 22102–22111 (2007). CASPubMed Google Scholar
Nakasawa, T. et al. Critical regions for assembly of vertebrate nonmuscle myosin II. Biochemistry44, 174–183 (2005). CASPubMed Google Scholar
Sato, M. K., Takahashi, M. & Yazawa, M. Two regions of the tail are necessary for the isoform-specific functions of nonmuscle myosin IIB. Mol. Biol. Cell18, 1009–1017 (2007). CASPubMedPubMed Central Google Scholar
Sandquist, J. C. & Means, A. R. The C-terminal tail region of nonmuscle myosin II directs isoform-specific distribution in migrating cells. Mol. Biol. Cell19, 5156–5167 (2008). CASPubMedPubMed Central Google Scholar
Vicente-Manzanares, M., Koach, M. A., Whitmore, L., Lamers, M. L. & Horwitz, A. F. Segregation and activation of myosin IIB creates a rear in migrating cells. J. Cell Biol.183, 543–554 (2008). CASPubMedPubMed Central Google Scholar
Somlyo, A. P. & Somlyo, A. V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev.83, 1325–1358 (2003). CASPubMed Google Scholar
Wendt, T., Taylor, D., Trybus, K. M. & Taylor, K. Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc. Natl Acad. Sci. USA98, 4361–4366 (2001). CASPubMedPubMed Central Google Scholar
Sellers, J. R., Eisenberg, E. & Adelstein, R. S. The binding of smooth muscle heavy meromyosin to actin in the presence of ATP. Effect of phosphorylation. J. Biol. Chem.257, 13880–13883 (1982). CASPubMed Google Scholar
Hirata, N., Takahashi, M. & Yazawa, M. Diphosphorylation of regulatory light chain of myosin IIA is responsible for proper cell spreading. Biochem. Biophys. Res. Commun.381, 682–687 (2009). CASPubMed Google Scholar
Ikebe, M., Hartshorne, D. J. & Elzinga, M. Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin. J. Biol. Chem.261, 36–39 (1986). CASPubMed Google Scholar
Umemoto, S., Bengur, A. R. & Sellers, J. R. Effect of multiple phosphorylations of smooth muscle and cytoplasmic myosins on movement in an in vitro motility assay. J. Biol. Chem.264, 1431–1436 (1989). CASPubMed Google Scholar
Scholey, J. M., Taylor, K. A. & Kendrick-Jones, J. Regulation of non-muscle myosin assembly by calmodulin-dependent light chain kinase. Nature287, 233–235 (1980). CASPubMed Google Scholar
Woodhead, J. L. et al. Atomic model of a myosin filament in the relaxed state. Nature436, 1195–1199 (2005). CASPubMed Google Scholar
Jung, H. S., Komatsu, S., Ikebe, M. & Craig, R. Head–head and head–tail interaction: a general mechanism for switching off myosin II activity in cells. Mol. Biol. Cell19, 3234–3242 (2008). CASPubMedPubMed Central Google Scholar
Craig, R. & Woodhead, J. L. Structure and function of myosin filaments. Curr. Opin. Struct. Biol.16, 204–212 (2006). CASPubMed Google Scholar
Burgess, S. A. et al. Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state. J. Mol. Biol.372, 1165–1178 (2007). Together with references 35 and 41–43, this is an outstanding structural study that shows the transformation of the folded, blocked (10S) state to the unfolded, activated (6S) state of single NM II molecules following RLC phosphorylation. These studies also show the interaction of the two myosin heads in the inactive state. CASPubMed Google Scholar
Matsumura, F. Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol.15, 371–377 (2005). CASPubMed Google Scholar
Tan, I., Yong, J., Dong, J. M., Lim, L. & Leung, T. A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow. Cell135, 123–136 (2008). CASPubMed Google Scholar
Matsumura, F. & Hartshorne, D. J. Myosin phosphatase target subunit: Many roles in cell function. Biochem. Biophys. Res. Commun.369, 149–156 (2008). CASPubMed Google Scholar
Totsukawa, G. et al. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J. Cell Biol.150, 797–806 (2000). CASPubMedPubMed Central Google Scholar
Totsukawa, G. et al. Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J. Cell Biol.164, 427–439 (2004). CASPubMedPubMed Central Google Scholar
Nishikawa, M., Sellers, J. R., Adelstein, R. S. & Hidaka, H. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J. Biol. Chem.259, 8808–8814 (1984). CASPubMed Google Scholar
Komatsu, S. & Ikebe, M. The phosphorylation of myosin II at the Ser1 and Ser2 is critical for normal platelet-derived growth factor induced reorganization of myosin filaments. Mol. Biol. Cell18, 5081–5090 (2007). CASPubMedPubMed Central Google Scholar
Bosgraaf, L. & van Haastert, P. J. The regulation of myosin II in Dictyostelium. Eur. J. Cell Biol.85, 969–979 (2006). CASPubMed Google Scholar
Even-Faitelson, L. & Ravid, S. PAK1 and aPKCζ regulate myosin II-B phosphorylation: a novel signaling pathway regulating filament assembly. Mol. Biol. Cell17, 2869–2881 (2006). CASPubMedPubMed Central Google Scholar
Dulyaninova, N. G., Malashkevich, V. N., Almo, S. C. & Bresnick, A. R. Regulation of myosin-IIA assembly and Mts1 binding by heavy chain phosphorylation. Biochemistry44, 6867–6876 (2005). CASPubMed Google Scholar
Clark, K. et al. TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation. J. Mol. Biol.378, 790–803 (2008). PubMedPubMed Central Google Scholar
Conti, M. A., Sellers, J. R., Adelstein, R. S. & Elzinga, M. Identification of the serine residue phosphorylated by protein kinase C in vertebrate nonmuscle myosin heavy chains. Biochemistry30, 966–970 (1991). CASPubMed Google Scholar
Ludowyke, R. I. et al. Phosphorylation of nonmuscle myosin heavy chain IIA on Ser1917 is mediated by protein kinase C βII and coincides with the onset of stimulated degranulation of RBL-2H3 mast cells. J. Immunol.177, 1492–1499 (2006). CASPubMed Google Scholar
Li, Z. H. & Bresnick, A. R. The S100A4 metastasis factor regulates cellular motility via a direct interaction with myosin-IIA. Cancer Res.66, 5173–5180 (2006). CASPubMed Google Scholar
Clark, K. et al. The α-kinases TRPM6 and TRPM7, but not eEF-2 kinase, phosphorylate the assembly domain of myosin IIA, IIB and IIC. FEBS Lett.582, 2993–2997 (2008). CASPubMed Google Scholar
Ronen, D. & Ravid, S. Myosin II tailpiece determines its paracrystal structure, filament assembly properties, and cellular localization. J. Biol. Chem.284, 24948–24957 (2009). CASPubMedPubMed Central Google Scholar
Heath, J. P. & Holifield, B. F. Cell locomotion: new research tests old ideas on membrane and cytoskeletal flow. Cell. Motil. Cytoskeleton18, 245–257 (1991). CASPubMed Google Scholar
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell112, 453–465 (2003). CASPubMed Google Scholar
Koestler, S. A., Auinger, S., Vinzenz, M., Rottner, K. & Small, J. V. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nature Cell Biol.10, 306–313 (2008). CASPubMed Google Scholar
Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science305, 1782–1786 (2004). Describes the kinetic and compositional distinction between the lamellipodium and the lamellum — the two actin networks in protrusions. CASPubMed Google Scholar
Delorme, V. et al. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev. Cell13, 646–662 (2007). CASPubMedPubMed Central Google Scholar
Cai, Y. et al. Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys. J.91, 3907–3920 (2006). CASPubMedPubMed Central Google Scholar
Giannone, G. et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell116, 431–443 (2004). CASPubMed Google Scholar
Giannone, G. et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell128, 561–575 (2007). CASPubMedPubMed Central Google Scholar
Anderson, T. W., Vaughan, A. N. & Cramer, L. P. Retrograde flow and myosin II activity within the leading cell edge deliver F-actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts. Mol. Biol. Cell19, 5006–5018 (2008). CASPubMedPubMed Central Google Scholar
Nemethova, M., Auinger, S. & Small, J. V. Building the actin cytoskeleton: filopodia contribute to the construction of contractile bundles in the lamella. J. Cell Biol.180, 1233–1244 (2008). CASPubMedPubMed Central Google Scholar
Even-Ram, S. et al. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nature Cell Biol.9, 299–309 (2007). Establishes the role of NM IIA in the co-regulation of actin and microtubule functions in motile cells. CASPubMed Google Scholar
Mitchison, T. & Kirschner, M. Cytoskeletal dynamics and nerve growth. Neuron1, 761–772 (1988). CASPubMed Google Scholar
Lin, C. H. & Forscher, P. Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron14, 763–771 (1995). CASPubMed Google Scholar
Jay, P. Y., Pham, P. A., Wong, S. A. & Elson, E. L. A mechanical function of myosin II in cell motility. J. Cell Sci.108, 387–393 (1995). CASPubMed Google Scholar
Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nature Cell Biol.10, 1039–1050 (2008). CASPubMed Google Scholar
Alexandrova, A. Y. et al. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS ONE3, e3234 (2008). PubMedPubMed Central Google Scholar
Humphries, J. D. et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol.179, 1043–1057 (2007). CASPubMedPubMed Central Google Scholar
Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell127, 1015–26 (2006). CASPubMedPubMed Central Google Scholar
del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science323, 638–641 (2009). CASPubMed Google Scholar
Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls α5β1 function. Science323, 642–644 (2009). CASPubMed Google Scholar
Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature424, 334–337 (2003). CASPubMed Google Scholar
Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol.141, 539–551 (1998). CASPubMedPubMed Central Google Scholar
Schwaiger, I., Sattler, C., Hostetter, D. R. & Rief, M. The myosin coiled-coil is a truly elastic protein structure. Nature Mater.1, 232–235 (2002). CAS Google Scholar
Schneider, I. C., Hays, C. K. & Waterman, C. M. Epidermal growth factor-induced contraction regulates paxillin phosphorylation to temporally separate traction generation from de-adhesion. Mol. Biol. Cell20, 3155-3167 (2009).
Yoshigi, M., Hoffman, L. M., Jensen, C. C., Yost, H. J. & Beckerle, M. C. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol.171, 209–215 (2005). CASPubMedPubMed Central Google Scholar
Wang, H. B., Dembo, M., Hanks, S. K. & Wang, Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA98, 11295–11300 (2001). CASPubMedPubMed Central Google Scholar
Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol.159, 695–705 (2002). CASPubMedPubMed Central Google Scholar
Chen, C. S. Mechanotransduction — a field pulling together? J. Cell Sci.121, 3285–3292 (2008). CASPubMed Google Scholar
Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol.153, 881–888 (2001). CASPubMedPubMed Central Google Scholar
Beningo, K. A., Hamao, K., Dembo, M., Wang, Y. L. & Hosoya, H. Traction forces of fibroblasts are regulated by the Rho-dependent kinase but not by the myosin light chain kinase. Arch. Biochem. Biophys.456, 224–231 (2006). CASPubMedPubMed Central Google Scholar
Parsons, J. T. Focal adhesion kinase: the first ten years. J. Cell Sci.116, 1409–1416 (2003). CASPubMed Google Scholar
Deakin, N. O. & Turner, C. E. Paxillin comes of age. J. Cell Sci.121, 2435–2444 (2008). CASPubMed Google Scholar
Mitra, S. K. & Schlaepfer, D. D. Integrin-regulated FAK–Src signaling in normal and cancer cells. Curr. Opin. Cell Biol.18, 516–523 (2006). CASPubMed Google Scholar
Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nature Rev. Mol. Cell Biol.10, 21–33 (2009). CAS Google Scholar
Vicente-Manzanares, M., Choi, C. K. & Horwitz, A. R. Integrins in cell migration — the actin connection. J. Cell Sci.122, 199–206 (2009). CASPubMed Google Scholar
Ballestrem, C. et al. Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J. Cell Sci.119, 866–875 (2006). CASPubMed Google Scholar
Smith, A. et al. A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J. Cell Biol.170, 141–151 (2005). CASPubMedPubMed Central Google Scholar
Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol.9, 11–20 (1999). CASPubMed Google Scholar
Yam, P. T. et al. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol.178, 1207–1221 (2007). CASPubMedPubMed Central Google Scholar
Mseka, T., Bamburg, J. R. & Cramer, L. P. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J. Cell Sci.120, 4332–4344 (2007). CASPubMed Google Scholar
Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell114, 201–214 (2003). CASPubMed Google Scholar
Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science302, 1704–1709 (2003). CASPubMed Google Scholar
Eddy, R. J., Pierini, L. M., Matsumura, F. & Maxfield, F. R. Ca2+-dependent myosin II activation is required for uropod retraction during neutrophil migration. J. Cell Sci.113, 1287–1298 (2000). CASPubMed Google Scholar
Kolega, J. Asymmetry in the distribution of free versus cytoskeletal myosin II in locomoting microcapillary endothelial cells. Exp. Cell Res.231, 66–82 (1997). CASPubMed Google Scholar
Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol.133, 1403–1415 (1996). Implicates NM II in trailing edge retraction. CASPubMed Google Scholar
Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol.154, 147–160 (2001). CASPubMedPubMed Central Google Scholar
Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell106, 489–498 (2001). CASPubMed Google Scholar
Gomes, E. R., Jani, S. & Gundersen, G. G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell121, 451–463 (2005). Demonstrates the role of NM II in nuclear repositioning during cell migration. CASPubMed Google Scholar
Lo, C. M. et al. Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol. Biol. Cell15, 982–989 (2004). CASPubMedPubMed Central Google Scholar
Warren, D. T., Zhang, Q., Weissberg, P. L. & Shanahan, C. M. Nesprins: intracellular scaffolds that maintain cell architecture and coordinate cell function? Expert Rev. Mol. Med.7, 1–15 (2005). PubMed Google Scholar
Nery, F. C. et al. TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J. Cell Sci.121, 3476–3486 (2008). CASPubMed Google Scholar
Shewan, A. M. et al. Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol. Biol. Cell16, 4531–4542 (2005). CASPubMedPubMed Central Google Scholar
Ivanov, A. I. et al. A unique role for nonmuscle myosin heavy chain IIA in regulation of epithelial apical junctions. PLoS ONE2, e658 (2007). PubMedPubMed Central Google Scholar
Yamada, S. & Nelson, W. J. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J. Cell Biol.178, 517–527 (2007). CASPubMedPubMed Central Google Scholar
Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature456, 957–961 (2008). CASPubMedPubMed Central Google Scholar
Ilani, T., Vasiliver-Shamis, G., Vardhana, S., Bretscher, A. & Dustin, M. L. T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nature Immunol.10, 531–539 (2009). CAS Google Scholar
Young, P. E., Richman, A. M., Ketchum, A. S. & Kiehart, D. P. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev.7, 29–41 (1993). CASPubMed Google Scholar
Karess, R. E. et al. The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. Cell65, 1177–1189 (1991). CASPubMed Google Scholar
Winter, C. G. et al. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell105, 81–91 (2001). CASPubMed Google Scholar
Skoglund, P., Rolo, A., Chen, X., Gumbiner, B. M. & Keller, R. Convergence and extension at gastrulation require a myosin IIB-dependent cortical actin network. Development135, 2435–2444 (2008). CASPubMed Google Scholar
Brodu, V. & Casanova, J. The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes Dev.20, 1817–1828 (2006). CASPubMedPubMed Central Google Scholar
Myat, M. M. Making tubes in the Drosophila embryo. Dev. Dyn.232, 617–632 (2005). CASPubMed Google Scholar
Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell91, 905–915 (1997). CASPubMed Google Scholar
Pilot, F. & Lecuit, T. Compartmentalized morphogenesis in epithelia: from cell to tissue shape. Dev. Dyn.232, 685–694 (2005). CASPubMed Google Scholar
Rolo, A., Skoglund, P. & Keller, R. Morphogenetic movements driving neural tube closure in Xenopus require myosin IIB. Dev. Biol.327, 327–338 (2009). CASPubMed Google Scholar
Hildebrand, J. D. & Soriano, P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell99, 485–497 (1999). CASPubMed Google Scholar
Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature429, 667–671 (2004). CASPubMed Google Scholar
Yamamoto, N., Okano, T., Ma, X., Adelstein, R. S. & Kelley, M. W. Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development136, 1977–1986 (2009). CASPubMedPubMed Central Google Scholar
Corrigall, D., Walther, R. F., Rodriguez, L., Fichelson, P. & Pichaud, F. Hedgehog signaling is a principal inducer of Myosin-II-driven cell ingression in Drosophila epithelia. Dev. Cell13, 730–742 (2007). CASPubMed Google Scholar
Meshel, A. S., Wei, Q., Adelstein, R. S. & Sheetz, M. P. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nature Cell Biol.7, 157–164 (2005). CASPubMed Google Scholar
Zhang, Q., Magnusson, M. K. & Mosher, D. F. Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Mol. Biol. Cell8, 1415–1425 (1997). CASPubMedPubMed Central Google Scholar
Dzamba, B. J., Jakab, K. R., Marsden, M., Schwartz, M. A. & DeSimone, D. W. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization. Dev. Cell16, 421–432 (2009). CASPubMedPubMed Central Google Scholar
Conti, M. A., Even-Ram, S., Liu, C., Yamada, K. M. & Adelstein, R. S. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J. Biol. Chem.279, 41263–41266 (2004). CASPubMed Google Scholar
Tullio, A. N. et al. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc. Natl Acad. Sci. USA94, 12407–12412 (1997). CASPubMedPubMed Central Google Scholar
Tullio, A. N. et al. Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin II-B heavy chain. J. Comp. Neurol.433, 62–74 (2001). CASPubMed Google Scholar
Burt, R. A., Joseph, J. E., Milliken, S., Collinge, J. E. & Kile, B. T. Description of a novel mutation leading to _MYH9_-related disease. Thromb. Res.122, 861–863 (2008). CASPubMed Google Scholar
Canobbio, I. et al. Altered cytoskeleton organization in platelets from patients with _MYH9_-related disease. J. Thromb. Haemost.3, 1026–1035 (2005). CASPubMed Google Scholar
Johnson, G. J., Leis, L. A., Krumwiede, M. D. & White, J. G. The critical role of myosin IIA in platelet internal contraction. J. Thromb. Haemost.5, 1516–1529 (2007). CASPubMed Google Scholar
Calaminus, S. D. et al. MyosinIIa contractility is required for maintenance of platelet structure during spreading on collagen and contributes to thrombus stability. J. Thromb. Haemost.5, 2136–2145 (2007). CASPubMed Google Scholar
Hu, A., Wang, F. & Sellers, J. R. Mutations in human nonmuscle myosin IIA found in patients with May-Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function. J. Biol. Chem.277, 46512–46517 (2002). CASPubMed Google Scholar
Kunishima, S., Hamaguchi, M. & Saito, H. Differential expression of wild-type and mutant NMMHC-IIA polypeptides in blood cells suggests cell-specific regulation mechanisms in MYH9 disorders. Blood111, 3015–3023 (2008). CASPubMed Google Scholar
Pecci, A. et al. Pathogenetic mechanisms of hematological abnormalities of patients with MYH9 mutations. Hum. Mol. Genet.14, 3169–3178 (2005). This study analyses 11 patients from 6 families, with 6 different NM IIA mutations, and provides evidence that defects in the megakaryocytic lineage arise from haploinsufficiency of NM IIA, whereas the inclusion bodies in granulocytes are due to the mutant form of NM IIA interfering with the wild-type form. CASPubMed Google Scholar
Leon, C. et al. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood110, 3183–3191 (2007). CASPubMed Google Scholar
Eckly, A. et al. Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactivation. Blood113, 3182–3189 (2008). PubMed Google Scholar
Ma, X., Kawamoto, S., Hara, Y. & Adelstein, R. S. A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol. Biol. Cell15, 2568–2579 (2004). CASPubMedPubMed Central Google Scholar
Cantrell, J. R., Haller, J. A. & Ravitch, M. M. A syndrome of congenital defects involving the abdominal wall, sternum, diaphragm, pericardium, and heart. Surg. Gynecol. Obstet.107, 602–614 (1958). CASPubMed Google Scholar
Ma, X., Bao, J. & Adelstein, R. S. Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice. Mol. Biol. Cell18, 2305–2312 (2007). CASPubMedPubMed Central Google Scholar
Donaudy, F. et al. Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4). Am. J. Hum. Genet.74, 770–776 (2004). CASPubMedPubMed Central Google Scholar
Yang, T. et al. Genetic heterogeneity of deafness phenotypes linked to DFNA4. Am. J. Med. Genet. A139, 9–12 (2005). PubMed Google Scholar
Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nature Rev. Cancer9, 108–122 (2009). CASPubMed Google Scholar
Medeiros, N. A., Burnette, D. T. & Forscher, P. Myosin II functions in actin-bundle turnover in neuronal growth cones. Nature Cell Biol.8, 215–226 (2006). CASPubMed Google Scholar
Miyajima, Y. & Kunishima, S. Identification of the first in cis mutations in MYH9 disorder. Eur. J. Haematol.82, 288–291 (2009). CASPubMed Google Scholar
Miyazaki, K., Kunishima, S., Fujii, W. & Higashihara, M. Identification of three in-frame deletion mutations in MYH9 disorders suggesting an important hot spot for small rearrangements in MYH9 exon 24. Eur. J. Haematol.83, 230–234 (2009). CASPubMed Google Scholar
De Rocco, D. et al. Identification of the first duplication in _MYH9_-related disease: A hot spot for hot unequal crossing-over within exon 24 of the MYH9 gene. Eur. J. Med. Genet.52, 191–194 (2009). PubMed Google Scholar
Capria, M. et al. Double nucleotidic mutation of the MYH9 gene in a young patient with end-stage renal disease. Nephrol Dial Transplant19, 249–251 (2004). CASPubMed Google Scholar