Integrated morphodynamic signalling of the mammary gland (original) (raw)
Peaker, M. The mammary gland in mammalian evolution: a brief commentary on some of the concepts. J. Mammary Gland Biol. Neoplasia7, 347–353 (2002). ArticlePubMed Google Scholar
Forsyth, I. A. & Neville, M. C. Introduction: the myoepithelial cell and milk letdown; entrance to the multifunctional role of oxytocin. J. Mammary Gland Biol. Neoplasia14, 221–222 (2009). ArticlePubMed Google Scholar
Williams, J. M. & Daniel, C. W. Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol.97, 274–290 (1983). ArticleCASPubMed Google Scholar
Polyak, K. & Kalluri, R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb. Perspect. Biol.2, a003244 (2010). ArticleCASPubMedPubMed Central Google Scholar
Robinson, G. W. Cooperation of signalling pathways in embryonic mammary gland development. Nature Rev. Genet.8, 963–972 (2007). ArticleCASPubMed Google Scholar
Watson, C. J. & Khaled, W. T. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development135, 995–1003 (2008). ArticleCASPubMed Google Scholar
Hens, J. R. & Wysolmerski, J. J. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res.7, 220–224 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hinck, L. & Silberstein, G. B. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res.7, 245–251 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sternlicht, M. D., Kouros-Mehr, H., Lu, P. & Werb, Z. Hormonal and local control of mammary branching morphogenesis. Differentiation74, 365–381 (2006). ArticleCASPubMedPubMed Central Google Scholar
Brisken, C. et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev. Biol.210, 96–106 (1999). ArticleCASPubMed Google Scholar
Oakes, S. R., Rogers, R. L., Naylor, M. J. & Ormandy, C. J. Prolactin regulation of mammary gland development. J. Mammary Gland Biol. Neoplasia13, 13–28 (2008). ArticlePubMed Google Scholar
Walker, N. I., Bennett, R. E. & Kerr, J. F. Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat.185, 19–32 (1989). ArticleCASPubMed Google Scholar
Lund, L. R. et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development122, 181–193 (1996). ArticleCASPubMed Google Scholar
Alexander, C. M., Selvarajan, S., Mudgett, J. & Werb, Z. Stromelysin-1 regulates adipogenesis during mammary gland involution. J. Cell Biol.152, 693–703 (2001). ArticleCASPubMedPubMed Central Google Scholar
Watson, C. J. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res.8, 203 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
McNally, S. & Martin, F. Molecular regulators of pubertal mammary gland development. Ann. Med.43, 212–234 (2011). ArticlePubMed Google Scholar
Cowin, P. & Wysolmerski, J. Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb. Perspect. Biol.2, a003251 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Davies, J. A. Do different branching epithelia use a conserved developmental mechanism? Bioessays24, 937–948 (2002). ArticleCASPubMed Google Scholar
Affolter, M., Zeller, R. & Caussinus, E. Tissue remodelling through branching morphogenesis. Nature Rev. Mol. Cell Biol.10, 831–842 (2009). ArticleCAS Google Scholar
Ghabrial, A. S. & Krasnow, M. A. Social interactions among epithelial cells during tracheal branching morphogenesis. Nature441, 746–749 (2006). ArticleCASPubMed Google Scholar
Sutherland, D., Samakovlis, C. & Krasnow, M. A. branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell87, 1091–1101 (1996). ArticleCASPubMed Google Scholar
Weaver, M., Dunn, N. R. & Hogan, B. L. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development127, 2695–2704 (2000). ArticleCASPubMed Google Scholar
Shakya, R., Watanabe, T. & Costantini, F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev. Cell8, 65–74 (2005). ArticleCASPubMed Google Scholar
Affolter, M. et al. Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev. Cell4, 11–18 (2003). ArticleCASPubMed Google Scholar
Silberstein, G. B. & Daniel, C. W. Investigation of mouse mammary ductal growth regulation using slow-release plastic implants. J. Dairy Sci.70, 1981–1990 (1987). ArticleCASPubMed Google Scholar
Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme of mouse lung development. Nature453, 745–750 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schedin, P. & Keely, P. J. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol.3, a003228 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Khokha, R. & Werb, Z. Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb. Perspect. Biol.3, a004333 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Bocchinfuso, W. P. & Korach, K. S. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia2, 323–334 (1997). ArticleCASPubMed Google Scholar
Feng, Y., Manka, D., Wagner, K. U. & Khan, S. A. Estrogen receptor-α expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc. Natl Acad. Sci. USA104, 14718–14723 (2007). ArticleCASPubMedPubMed Central Google Scholar
Daniel, C. W., Silberstein, G. B. & Strickland, P. Direct action of 17 β-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res.47, 6052–6057 (1987). CASPubMed Google Scholar
Cunha, G. R. et al. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J. Mammary Gland Biol. Neoplasia2, 393–402 (1997). ArticleCASPubMed Google Scholar
Zhang, H. Z., Bennett, J. M., Smith, K. T., Sunil, N. & Haslam, S. Z. Estrogen mediates mammary epithelial cell proliferation in serum-free culture indirectly via mammary stroma-derived hepatocyte growth factor. Endocrinology143, 3427–3434 (2002). ArticleCASPubMed Google Scholar
Coleman, S., Silberstein, G. B. & Daniel, C. W. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev. Biol.127, 304–315 (1988). ArticleCASPubMed Google Scholar
Luetteke, N. C. et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development126, 2739–2750 (1999). ArticleCASPubMed Google Scholar
Sebastian, J. et al. Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ.9, 777–785 (1998). CASPubMed Google Scholar
Sternlicht, M. D. et al. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development132, 3923–3933 (2005). Demonstrated that ADAM17 has a crucial role during mammary branching morphogenesis through cleavage of AREG from the epithelial cell surface to activate EGFR signalling within stromal cells. ArticleCASPubMed Google Scholar
Ciarloni, L., Mallepell, S. & Brisken, C. Amphiregulin is an essential mediator of estrogen receptor α function in mammary gland development. Proc. Natl Acad. Sci. USA104, 5455–5460 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wiesen, J. F., Young, P., Werb, Z. & Cunha, G. R. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development126, 335–344 (1999). Used knockout mice and mammary gland transplantation experiments to demonstrate that EGFR signalling is required in the stromal compartment. ArticleCASPubMed Google Scholar
Kleinberg, D. L., Feldman, M. & Ruan, W. IGF-I: an essential factor in terminal end bud formation and ductal morphogenesis. J. Mammary Gland Biol. Neoplasia5, 7–17 (2000). ArticleCASPubMed Google Scholar
Gallego, M. I. et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev. Biol.229, 163–175 (2001). ArticleCASPubMed Google Scholar
Meyer, S. E., Zinser, G. M., Stuart, W. D., Pathrose, P. & Waltz, S. E. The Ron receptor tyrosine kinase negatively regulates mammary gland branching morphogenesis. Dev. Biol.333, 173–185 (2009). ArticleCASPubMedPubMed Central Google Scholar
Vaught, D., Chen, J. & Brantley-Sieders, D. M. Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Mol. Biol. Cell20, 2572–2581 (2009). ArticleCASPubMedPubMed Central Google Scholar
Andrechek, E. R., White, D. & Muller, W. J. Targeted disruption of ErbB2/Neu in the mammary epithelium results in impaired ductal outgrowth. Oncogene24, 932–937 (2005). ArticleCASPubMed Google Scholar
Jackson-Fisher, A. J. et al. ErbB2 is required for ductal morphogenesis of the mammary gland. Proc. Natl Acad. Sci. USA101, 17138–17143 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tidcombe, H. et al. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc. Natl Acad. Sci. USA100, 8281–8286 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fata, J. E. et al. The MAPKERK-1,2 pathway integrates distinct and antagonistic signals from TGFα and FGF7 in morphogenesis of mouse mammary epithelium. Dev. Biol.306, 193–207 (2007). Showed that although both TGFα and FGF7 signal through MAPKs, they elicit antagonistic phenotypic outcomes in primary mammary organoids owing to differences in the duration of MAPK activation. ArticleCASPubMedPubMed Central Google Scholar
Xu, X. et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development125, 753–765 (1998). ArticleCASPubMed Google Scholar
Lu, P., Ewald, A. J., Martin, G. R. & Werb, Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev. Biol.321, 77–87 (2008). Demonstrated a local role for FGFR signalling in regulating cell proliferation and survival in the TEBs. ArticleCASPubMedPubMed Central Google Scholar
Parsa, S. et al. Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev. Biol.317, 121–131 (2008). Reported that FGFR signalling was required for TEB maintenance. Loss of FGFR2 impairs proliferation of luminal epithelial cells and results in poorly developed glands that lack TEBs. ArticleCASPubMed Google Scholar
Liu, X. et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev.11, 179–186 (1997). ArticleCASPubMed Google Scholar
Santos, S. J., Haslam, S. Z. & Conrad, S. E. Signal transducer and activator of transcription 5a mediates mammary ductal branching and proliferation in the nulliparous mouse. Endocrinology151, 2876–2885 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., Parslow, T. & Varmus, H. E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell55, 619–625 (1988). ArticleCASPubMed Google Scholar
Imbert, A., Eelkema, R., Jordan, S., Feiner, H. & Cowin, P. Δn89β-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J. Cell Biol.153, 555–568 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gallagher, R. C. et al. Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene21, 6446–6457 (2002). ArticleCASPubMed Google Scholar
Hatsell, S. J. & Cowin, P. Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development133, 3661–3670 (2006). ArticleCASPubMed Google Scholar
Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature437, 1018–1021 (2005). ArticleCASPubMed Google Scholar
Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science317, 372–376 (2007). ArticleCASPubMed Google Scholar
Milenkovic, L., Scott, M. P. & Rohatgi, R. Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J. Cell Biol.187, 365–374 (2009). ArticleCASPubMedPubMed Central Google Scholar
McDermott, K. M., Liu, B. Y., Tlsty, T. D. & Pazour, G. J. Primary cilia regulate branching morphogenesis during mammary gland development. Curr. Biol.20, 731–737 (2010). Demonstrated that primary cilia are present on luminal, myoepithelial and stromal cells during mammary branching morphogenesis. The authors also found that ciliary dysfunction impairs ductal elongation, secondary and tertiary branching, and they proposed a role for WNT and Hedgehog signalling in these effects. ArticleCASPubMedPubMed Central Google Scholar
Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W. & Yost, H. J. FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature458, 651–654 (2009). ArticleCASPubMedPubMed Central Google Scholar
Szabova, L., Yamada, S. S., Birkedal-Hansen, H. & Holmbeck, K. Expression pattern of four membrane-type matrix metalloproteinases in the normal and diseased mouse mammary gland. J. Cell Physiol.205, 123–132 (2005). ArticleCASPubMed Google Scholar
Wiseman, B. S. et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol.162, 1123–1133 (2003). Showed that MMP2, MMP3 and MMP14 are non-uniformly expressed throughout the developing mammary gland and that they have distinct roles during branching morphogenesis. ArticleCASPubMedPubMed Central Google Scholar
Ucar, A. et al. miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nature Genet.42, 1101–1108 (2010). Discovered that the microRNA-212/132 family is indispensable during mammary development and functions in the stroma. ArticleCASPubMed Google Scholar
Andersen, K. et al. The metastasis-promoting protein S100A4 regulates mammary branching morphogenesis. Dev. Biol.352, 181–190 (2011). ArticleCASPubMed Google Scholar
Cheng, N. et al. Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene24, 5053–5068 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nelson, C. M., Vanduijn, M. M., Inman, J. L., Fletcher, D. A. & Bissell, M. J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science314, 298–300 (2006). Showed that tissue geometry specifies the local concentration of TGFβ and thereby determines sites of branching morphogenesis in engineered mammary tissues. ArticleCASPubMedPubMed Central Google Scholar
Lee, W. C. & Davies, J. A. Epithelial branching: the power of self-loathing. Bioessays29, 205–207 (2007). ArticleCASPubMed Google Scholar
Pierce, D. F. Jr et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-β 1. Genes Dev.7, 2308–2317 (1993). ArticleCASPubMed Google Scholar
Crowley, M. R., Bowtell, D. & Serra, R. TGF-β, c-Cbl, and PDGFR-α the in mammary stroma. Dev. Biol.279, 58–72 (2005). ArticleCASPubMed Google Scholar
Joseph, H., Gorska, A. E., Sohn, P., Moses, H. L. & Serra, R. Overexpression of a kinase-deficient transforming growth factor-β type II receptor in mouse mammary stroma results in increased epithelial branching. Mol. Biol. Cell10, 1221–1234 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ewan, K. B. et al. Latent transforming growth factor-β activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am. J. Pathol.160, 2081–2093 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jahchan, N. S., You, Y. H., Muller, W. J. & Luo, K. Transforming growth factor-β regulator SnoN modulates mammary gland branching morphogenesis, postlactational involution, and mammary tumorigenesis. Cancer Res.70, 4204–4213 (2010). ArticleCASPubMedPubMed Central Google Scholar
Roarty, K. & Serra, R. Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal growth. Development134, 3929–3939 (2007). Showed that WNT5A is required for TGFβ-mediated inhibition of mammary branching morphogenesis and that loss of TGFβ signalling reduces phosphorylation of the collagen receptor DDR1. ArticleCASPubMed Google Scholar
Pavlovich, A. L., Boghaert, E. & Nelson, C. M. Mammary branch initiation and extension are inhibited by separate pathways downstream of TGFβ in culture. Exp. Cell Res.317, 1872–1884 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vogel, W. F., Aszodi, A., Alves, F. & Pawson, T. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol. Cell. Biol.21, 2906–2917 (2001). ArticleCASPubMedPubMed Central Google Scholar
Macias, H. et al. SLIT/ROBO1 signaling suppresses mammary branching morphogenesis by limiting basal cell number. Dev. Cell20, 827–840 (2011). ArticleCASPubMedPubMed Central Google Scholar
Daniel, C. W., Robinson, S. & Silberstein, G. B. The role of TGF-β in patterning and growth of the mammary ductal tree. J. Mammary Gland Biol. Neoplasia1, 331–341 (1996). ArticleCASPubMed Google Scholar
Silberstein, G. B. & Daniel, C. W. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol.90, 215–222 (1982). ArticleCASPubMed Google Scholar
Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol.133, 1403–1415 (1996). ArticleCASPubMed Google Scholar
Landsverk, M. L. & Epstein, H. F. Genetic analysis of myosin II assembly and organization in model organisms. Cell. Mol. Life Sci.62, 2270–2282 (2005). ArticleCASPubMed Google Scholar
McNeill, H., Ryan, T. A., Smith, S. J. & Nelson, W. J. Spatial and temporal dissection of immediate and early events following cadherin-mediated epithelial cell adhesion. J. Cell Biol.120, 1217–1226 (1993). ArticleCASPubMed Google Scholar
Gjorevski, N. & Nelson, C. M. Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr. Biol. (Camb.)2, 424–434 (2010). Demonstrated that mechanical stress is non-uniformly distributed within engineered mammary epithelial tissues and that branching morphogenesis occurs at regions of the tissue where stress is high. ArticleCAS Google Scholar
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell8, 241–254 (2005). For the first time, this study related the mechanical environment of mammary tissue to the malignant phenotype. The authors found that elevated tumour-like matrix stiffness impairs mammary tissue architecture and enhances growth through enhanced integrin clustering, extracellular signal-regulated kinase activation and RHO-associated protein kinase-mediated contractility. ArticleCASPubMed Google Scholar
Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. & Keely, P. J. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J. Cell Biol.163, 583–595 (2003). ArticleCASPubMedPubMed Central Google Scholar
Tang, D., Mehta, D. & Gunst, S. J. Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am. J. Physiol.276, C250–C258 (1999). ArticleCASPubMed Google Scholar
Yano, Y., Geibel, J. & Sumpio, B. E. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am. J. Physiol.271, C635–C649 (1996). ArticleCASPubMed Google Scholar
Nagy, T. et al. Mammary epithelial-specific deletion of the focal adhesion kinase gene leads to severe lobulo-alveolar hypoplasia and secretory immaturity of the murine mammary gland. J. Biol. Chem.282, 31766–31776 (2007). ArticleCASPubMed Google Scholar
van Miltenburg, M. H. et al. Complete focal adhesion kinase deficiency in the mammary gland causes ductal dilation and aberrant branching morphogenesis through defects in Rho kinase-dependent cell contractility. FASEB J.23, 3482–3493 (2009). ArticleCASPubMed Google Scholar
Alcaraz, J. et al. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J.27, 2829–2838 (2008). ArticleCASPubMedPubMed Central Google Scholar
Provenzano, P. P., Inman, D. R., Eliceiri, K. W. & Keely, P. J. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene28, 4326–4343 (2009). ArticleCASPubMedPubMed Central Google Scholar
Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol.7, 265–275 (2006). ArticleCAS Google Scholar
Muschler, J. & Streuli, C. H. Cell-matrix interactions in mammary gland development and breast cancer. Cold Spring Harb. Perspect. Biol.2, a003202 (2011). Google Scholar
Fata, J. E., Werb, Z. & Bissell, M. J. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res.6, 1–11 (2004). ArticleCASPubMed Google Scholar
Gehler, S. et al. Filamin A-β1 integrin complex tunes epithelial cell response to matrix tension. Mol. Biol. Cell20, 3224–3238 (2009). ArticleCASPubMedPubMed Central Google Scholar
Prajapati, R. T., Chavally-Mis, B., Herbage, D., Eastwood, M. & Brown, R. A. Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair Regen.8, 226–237 (2000). ArticleCASPubMed Google Scholar
Ruddy, J. M. et al. Differential effects of mechanical and biological stimuli on matrix metalloproteinase promoter activation in the thoracic aorta. Circulation120, S262–S268 (2009). ArticleCASPubMedPubMed Central Google Scholar
Connelly, J. T. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nature Cell Biol.12, 711–718 (2010). Reported that the actin cytoskeleton and transcription factors from the myocardin family transduce physical cues to regulate transcription and ultimately stem cell differentiation. ArticleCASPubMed Google Scholar
Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell113, 329–342 (2003). ArticleCASPubMed Google Scholar
Gomez, E. W., Chen, Q. K., Gjorevski, N. & Nelson, C. M. Tissue geometry patterns epithelial–mesenchymal transition via intercellular mechanotransduction. J. Cell. Biochem.110, 44–51 (2010). Showed that endogenous patterns of mechanical stress can induce spatially localized EMT within engineered mammary tissues by controlling the balance of monomeric and filamentous actin and consequently the nuclear translocation of myocardin-related transcription factor A (MRTFA). CASPubMedPubMed Central Google Scholar
Lee, K., Gjorevski, N., Boghaert, E., Radisky, D. C. & Nelson, C. M. Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO J.30, 2662–2674 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kouros-Mehr, H. & Werb, Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev. Dyn.235, 3404–3412 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chen, C. S. Mechanotransduction — a field pulling together? J. Cell Sci.121, 3285–3292 (2008). ArticleCASPubMed Google Scholar
Chiquet-Ehrismann, R. et al. Tenascin-C expression by fibroblasts is elevated in stressed collagen gels. J. Cell Biol.127, 2093–2101 (1994). ArticleCASPubMed Google Scholar
Inaguma, Y. et al. Epithelial induction of stromal tenascin in the mouse mammary gland: from embryogenesis to carcinogenesis. Dev. Biol.128, 245–255 (1988). ArticleCASPubMed Google Scholar
Filas, B. A., Efimov, I. R. & Taber, L. A. Optical coherence tomography as a tool for measuring morphogenetic deformation of the looping heart. Anat. Rec. (Hoboken)290, 1057–1068 (2007). Article Google Scholar
Varner, V. D., Voronov, D. A. & Taber, L. A. Mechanics of head fold formation: investigating tissue-level forces during early development. Development137, 3801–3811 (2010). ArticlePubMedPubMed Central Google Scholar
Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol.20, 54–62 (2009). ArticleCASPubMed Google Scholar
Ewald, A. J., Werb, Z. & Egeblad, M. Dynamic, long-term in vivo imaging of tumor-stroma interactions in mouse models of breast cancer using spinning-disk confocal microscopy. Cold Spring Harb. Protoc2011, pdb.top97 (2011). ArticlePubMedPubMed Central Google Scholar
Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nature Med.15, 1219–1223 (2009). ArticleCASPubMed Google Scholar
Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science302, 1704–1709 (2003). ArticleCASPubMed Google Scholar
Brahmbhatt, A. A. & Klemke, R. L. ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. J. Biol. Chem.278, 13016–13025 (2003). ArticleCASPubMed Google Scholar
Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol.4, e97–e100 (2002). ArticleCASPubMed Google Scholar
Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev. Mol. Cell Biol.10, 445–457 (2009). ArticleCAS Google Scholar
Caussinus, E., Colombelli, J. & Affolter, M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr. Biol.18, 1727–1734 (2008). Showed that tensile forces generated by tip cells inD. melanogastertracheal branches drive the intercalation of the remaining cells within the branch. ArticleCASPubMed Google Scholar
Ewald, A. J., Brenot, A., Duong, M., Chan, B. S. & Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell14, 570–581 (2008). Used long-term time-lapse imaging to visualize the dynamics of epithelial cells during branching morphogenesis of mammary organoids and observed that branching occurs through a multilayered, partially polarized epithelium, which featured large-scale coordinated cell movements. ArticleCASPubMedPubMed Central Google Scholar
Mori, H., Gjorevski, N., Inman, J. L., Bissell, M. J. & Nelson, C. M. Self-organization of engineered epithelial tubules by differential cellular motility. Proc. Natl Acad. Sci. USA106, 14890–14895 (2009). Demonstrated that differential motility is sufficient to drive cell sorting within engineered mammary tissues. Cells expressing high levels of MMP14 exhibit high directional persistence, which promotes their localization to the leading edge of the tissue. ArticleCASPubMedPubMed Central Google Scholar
Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial–mesenchymal transitions in development and disease. Cell139, 871–890 (2009). ArticleCASPubMed Google Scholar
Leroy, P. & Mostov, K. E. Slug is required for cell survival during partial epithelial–mesenchymal transition of HGF-induced tubulogenesis. Mol. Biol. Cell18, 1943–1952 (2007). ArticleCASPubMedPubMed Central Google Scholar
Arendt, L. M., Rudnick, J. A., Keller, P. J. & Kuperwasser, C. Stroma in breast development and disease. Semin. Cell Dev. Biol.21, 11–18 (2010). ArticleCASPubMed Google Scholar
Hovey, R. C. & Aimo, L. Diverse and active roles for adipocytes during mammary gland growth and function. J. Mammary Gland Biol. Neoplasia15, 279–290 (2010). ArticlePubMedPubMed Central Google Scholar
Pavlovich, A. L., Manivannan, S. & Nelson, C. M. Adipose stroma induces branching morphogenesis of engineered epithelial tubules. Tissue Eng. Part A16, 3719–3726 (2010). ArticlePubMedPubMed Central Google Scholar
Landskroner-Eiger, S., Park, J., Israel, D., Pollard, J. W. & Scherer, P. E. Morphogenesis of the developing mammary gland: stage-dependent impact of adipocytes. Dev. Biol.344, 968–978 (2010). ArticleCASPubMedPubMed Central Google Scholar
Couldrey, C. et al. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev. Dyn.223, 459–468 (2002). Showed that an absence of white adipose tissue prevents pubertal mammary morphogenesis but not alveolar differentiation during pregnancy. ArticlePubMed Google Scholar
Kamikawa, A. et al. Diet-induced obesity disrupts ductal development in the mammary glands of nonpregnant mice. Dev. Dyn.238, 1092–1099 (2009). ArticleCASPubMed Google Scholar
Thorn, S. R., Giesy, S. L., Myers, M. G. Jr & Boisclair, Y. R. Mammary ductal growth is impaired in mice lacking leptin-dependent signal transducer and activator of transcription 3 signaling. Endocrinology151, 3985–3995 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hovey, R. C., Goldhar, A. S., Baffi, J. & Vonderhaar, B. K. Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development. Mol. Endocrinol.15, 819–831 (2001). ArticleCASPubMed Google Scholar
Liang, Y., Brekken, R. A. & Hyder, S. M. Vascular endothelial growth factor induces proliferation of breast cancer cells and inhibits the anti-proliferative activity of anti-hormones. Endocr. Relat. Cancer13, 905–919 (2006). ArticleCASPubMed Google Scholar
Dabrosin, C., Margetts, P. J. & Gauldie, J. Estradiol increases extracellular levels of vascular endothelial growth factor in vivo in murine mammary cancer. Int. J. Cancer107, 535–540 (2003). ArticleCASPubMed Google Scholar
Reed, J. R. & Schwertfeger, K. L. Immune cell location and function during post-natal mammary gland development. J. Mammary Gland Biol. Neoplasia15, 329–339 (2010). ArticlePubMedPubMed Central Google Scholar
Van Nguyen, A. & Pollard, J. W. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev. Biol.247, 11–25 (2002). ArticleCASPubMed Google Scholar
Gouon-Evans, V., Rothenberg, M. E. & Pollard, J. W. Postnatal mammary gland development requires macrophages and eosinophils. Development127, 2269–2282 (2000). Demonstrated an essential role for macrophages and eosinophils in postnatal mammary morphogenesis. ArticleCASPubMed Google Scholar
Ingman, W. V., Wyckoff, J., Gouon-Evans, V., Condeelis, J. & Pollard, J. W. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev. Dyn.235, 3222–3229 (2006). ArticleCASPubMed Google Scholar
Lilla, J. N., Joshi, R. V., Craik, C. S. & Werb, Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J. Biol. Chem.284, 13792–13803 (2009). ArticleCASPubMedPubMed Central Google Scholar
Atabai, K., Sheppard, D. & Werb, Z. Roles of the innate immune system in mammary gland remodeling during involution. J. Mammary Gland Biol. Neoplasia12, 37–45 (2007). ArticlePubMedPubMed Central Google Scholar
Lilla, J. N. & Werb, Z. Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev. Biol.337, 124–133 (2010). ArticleCASPubMed Google Scholar
Russell, J. S., McGee, S. O., Ip, M. M., Kuhlmann, D. & Masso-Welch, P. A. Conjugated linoleic acid induces mast cell recruitment during mouse mammary gland stromal remodeling. J. Nutr.137, 1200–1207 (2007). ArticleCASPubMed Google Scholar
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121, 335–348 (2005). ArticleCASPubMed Google Scholar
Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell67, 901–908 (1991). ArticleCASPubMed Google Scholar
Simian, M. et al. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development128, 3117–3131 (2001). ArticleCASPubMed Google Scholar
Knox, S. M. et al. Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis. Science329, 1645–1647 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gyorki, D. E., Asselin-Labat, M. L., van Rooijen, N., Lindeman, G. J. & Visvader, J. E. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res.11, R62 (2009). ArticlePubMedPubMed Central Google Scholar
Pull, S. L., Doherty, J. M., Mills, J. C., Gordon, J. I. & Stappenbeck, T. S. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc. Natl Acad. Sci. USA102, 99–104 (2005). ArticleCASPubMed Google Scholar
Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science276, 1425–1428 (1997). ArticleCASPubMed Google Scholar
Nelson, C. M. et al. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA102, 11594–11599 (2005). ArticleCASPubMedPubMed Central Google Scholar
McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell6, 483–495 (2004). ArticleCASPubMed Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). ArticleCASPubMed Google Scholar
Nelson, C. M., Khauv, D., Bissell, M. J. & Radisky, D. C. Change in cell shape is required for matrix metalloproteinase-induced epithelial–mesenchymal transition of mammary epithelial cells. J. Cell. Biochem.105, 25–33 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ruiz, S. A. & Chen, C. S. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells26, 2921–2927 (2008). ArticlePubMedPubMed Central Google Scholar
Harris, A. K. Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol.61, 267–285 (1976). ArticleCASPubMed Google Scholar
Schotz, E.-M. et al. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J.2, 1–56 (2008). Article Google Scholar
Foty, R. A. & Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev. Biol.278, 255–263 (2005). ArticleCASPubMed Google Scholar
Rauzi, M., Verant, P., Lecuit, T. & Lenne, P. F. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nature Cell Biol.10, 1401–1410 (2008). ArticleCASPubMed Google Scholar
Larsen, M., Wei, C. & Yamada, K. M. Cell and fibronectin dynamics during branching morphogenesis. J. Cell Sci.119, 3376–3384 (2006). ArticleCASPubMed Google Scholar
Chi, X. et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev. Cell17, 199–209 (2009). ArticleCASPubMedPubMed Central Google Scholar
DeOme, K. B., Faulkin, L. J. Jr, Bern, H. A. & Blair, P. B. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res.19, 515–520 (1959). CASPubMed Google Scholar
Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature439, 84–88 (2006). ArticleCASPubMed Google Scholar
Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature439, 993–997 (2006). ArticleCASPubMed Google Scholar
Kim, N. D., Oberley, T. D. & Clifton, K. H. Primary culture of flow cytometry-sorted rat mammary epithelial cell (RMEC) subpopulations in a reconstituted basement membrane, Matrigel. Exp. Cell Res.209, 6–20 (1993). ArticleCASPubMed Google Scholar
Kim, N. D. & Clifton, K. H. Characterization of rat mammary epithelial cell subpopulations by peanut lectin and anti-Thy-1.1 antibody and study of flow-sorted cells in vivo. Exp. Cell Res.207, 74–85 (1993). ArticleCASPubMed Google Scholar
Kamiya, K., Gould, M. N. & Clifton, K. H. Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proc. Soc. Exp. Biol. Med.219, 217–225 (1998). ArticleCASPubMed Google Scholar
Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development125, 1921–1930 (1998). ArticleCASPubMed Google Scholar
Visvader, J. E. & Smith, G. H. Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harb. Perspect. Biol.3, a004879 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M. & Smalley, M. J. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res.8, R7 (2006). ArticleCASPubMed Google Scholar
Sleeman, K. E. et al. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J. Cell Biol.176, 19–26 (2007). ArticleCASPubMedPubMed Central Google Scholar
Asselin-Labat, M. L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biol.9, 201–209 (2007). ArticleCASPubMed Google Scholar
Lim, E. et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res.12, R21 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Taddei, I. et al. β1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature Cell Biol.10, 716–722 (2008). ArticleCASPubMed Google Scholar
Anderson, L. H., Boulanger, C. A., Smith, G. H., Carmeliet, P. & Watson, C. J. Stem cell marker prominin-1 regulates branching morphogenesis, but not regenerative capacity, in the mammary gland. Dev. Dyn.240, 674–681 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liu, S. et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res.66, 6063–6071 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dontu, G. et al. Role of notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res.6, R605–R615 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bai, L. & Rohrschneider, L. R. s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev.24, 1882–1892 (2010). ArticleCASPubMedPubMed Central Google Scholar
LaBarge, M. A. et al. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integr. Biol. (Camb.)1, 70–79 (2009). ArticleCAS Google Scholar
Booth, B. W. et al. The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proc. Natl Acad. Sci. USA105, 14891–14896 (2008). ArticleCASPubMedPubMed Central Google Scholar
Boulanger, C. A., Mack, D. L., Booth, B. W. & Smith, G. H. Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proc. Natl Acad. Sci. USA104, 3871–3876 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sternlicht, M. D. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast Cancer Res.8, 201 (2006). ArticleCASPubMed Google Scholar