Regulated necrosis: the expanding network of non-apoptotic cell death pathways (original) (raw)
Vogt, C. Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkröte (Alytes obstetricans). (Solothurn: Jent und Gassmann, 1842). Google Scholar
Lockshin, R. A. & Williams, C. M. Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J. Insect. Physiol.10, 643–649 (1964). ArticleCAS Google Scholar
Schweichel, J. U. & Merker, H. J. The morphology of various types of cell death in prenatal tissues. Teratology7, 253–266 (1973). ArticleCASPubMed Google Scholar
Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell44, 817–829 (1986). ArticleCASPubMed Google Scholar
Crawford, E. D. & Wells, J. A. Caspase substrates and cellular remodeling. Annu. Rev. Biochem.80, 1055–1087 (2011). ArticleCASPubMed Google Scholar
Kaczmarek, A., Vandenabeele, P. & Krysko, D. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity38, 209–223 (2013). ArticleCASPubMed Google Scholar
Taylor, R., Cullen, S. & Martin, S. Apoptosis: controlled demolition at the cellular level. Nature Rev. Mol. Cell Biol.9, 231–241 (2008). ArticleCAS Google Scholar
Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol.1, 489–495 (2000). ArticleCAS Google Scholar
Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell148, 213–227 (2012). ArticleCASPubMed Google Scholar
Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol.11, 700–714 (2010). ArticleCAS Google Scholar
Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science325, 332–336 (2009). ArticleCASPubMed Google Scholar
Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell137, 1112–1123 (2009). ArticleCASPubMedPubMed Central Google Scholar
Feng, S. et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal.19, 2056–2067 (2007). ArticleCASPubMed Google Scholar
He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell137, 1100–1111 (2009). ArticleCASPubMed Google Scholar
Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol.4, 313–321 (2008). ArticleCAS Google Scholar
Teng, X. et al. Structure–activity relationship study of novel necroptosis inhibitors. Bioorg. Med. Chem. Lett.15, 5039–5044 (2005). ArticleCASPubMed Google Scholar
Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol.1, 112–119 (2005). ArticleCAS Google Scholar
Laster, S., Wood, J. & Gooding, L. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol.141, 2629–2634 (1988). CASPubMed Google Scholar
Grooten, J., Goossens, V., Vanhaesebroeck, B. & Fiers, W. Cell membrane permeabilization and cellular collapse, followed by loss of dehydrogenase activity: early events in tumour necrosis factor-induced cytotoxicity. Cytokine5, 546–555 (1993). ArticleCASPubMed Google Scholar
Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med.187, 1477–1485 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kalai, M. et al. Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ.9, 981–994 (2002). ArticleCASPubMed Google Scholar
Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ.19, 107–120 (2012). ArticleCASPubMed Google Scholar
Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature430, 694–699 (2004). ArticleCASPubMed Google Scholar
Wilson, N. S., Dixit, V. & Ashkenazi, A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunol.10, 348–355 (2009). ArticleCAS Google Scholar
Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell150, 339–350 (2012). ArticleCASPubMedPubMed Central Google Scholar
Moquin, D., McQuade, T. & Chan, F. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PloS ONE8, e76841 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chen, W. et al. Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J. Biol. Chem.288, 16247–16261 (2013). ArticleCASPubMedPubMed Central Google Scholar
McQuade, T., Cho, Y. & Chan, F. positive and negative phosphorylation regulates RIP1 and RIP3-induced programmed necrosis. Biochem. J.456, 409–415 (2013). ArticleCASPubMed Google Scholar
Xie, T. et al. Structural insights into RIP3-mediated necroptotic signaling. Cell Rep.5, 70–78 (2013). ArticleCASPubMed Google Scholar
Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA109, 5322–5327 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shulga, N. & Pastorino, J. GRIM-19-mediated translocation of STAT3 to mitochondria is necessary for TNF-induced necroptosis. J. Cell Sci.125, 2995–3003 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem.267, 5317–5323 (1992). CASPubMed Google Scholar
Tait, Stephen, W. G. et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep.5, 878–885 (2013). ArticleCASPubMedPubMed Central Google Scholar
Murphy, J. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity39, 443–453 (2013). ArticleCASPubMed Google Scholar
Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome _c_-dependent caspase activation by eliminating IAP inhibition. Cell102, 33–42 (2000). CASPubMed Google Scholar
Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kB activation, and TNF-dependent apoptosis. Cell131, 669–681 (2007). ArticleCASPubMed Google Scholar
Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell131, 682–693 (2007). ArticleCASPubMed Google Scholar
Bertrand, M. J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell30, 689–700 (2008). ArticleCASPubMed Google Scholar
Yang, Q.-H. & Du, C. Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J. Biol. Chem.279, 16963–16970 (2004). ArticleCASPubMed Google Scholar
Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem.283, 24295–24299 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zarnegar, B. J. et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nature Immunol.9, 1371–1378 (2008). ArticleCAS Google Scholar
Vanlangenakker, N., Vanden Berghe, T., Krysko, D. V., Festjens, N. & Vandenabeele, P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr. Mol. Med.8, 207–220 (2008). ArticleCASPubMed Google Scholar
Galluzzi, L. et al. Programmed necrosis from molecules to health and disease. Int. Rev. Cell. Mol. Biol.289, 1–35 (2011). ArticleCASPubMed Google Scholar
Newton, K., Sun, X. & Dixit, V. M. Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol. Cell Biol.24, 1464–1469 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kaiser, W., Upton, J. & Mocarski, E. Viral modulation of programmed necrosis. Curr. Opin. Virol.3, 296–306 (2013). ArticleCASPubMed Google Scholar
Mack, C., Sickmann, A., Lembo, D. & Brune, W. Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc. Natl Acad. Sci. USA105, 3094–3099 (2008). ArticleCASPubMedPubMed Central Google Scholar
Skaletskaya, A. et al. A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc. Natl Acad. Sci. USA98, 7829–7834 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell133, 693–703 (2008). ArticleCASPubMed Google Scholar
Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis.3, e437 (2012). ArticleCASPubMedPubMed Central Google Scholar
Degterev, A., Maki, J. & Yuan, J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ.20, 366 (2013). ArticleCASPubMed Google Scholar
Zheng, W., Degterev, A., Hsu, E., Yuan, J. & Yuan, C. Structure–activity relationship study of a novel necroptosis inhibitor, necrostatin-7. Bioorg. Med. Chem. Lett.18, 4932–4935 (2008). ArticleCASPubMed Google Scholar
Wu, Z., Li, Y., Cai, Y., Yuan, J. & Yuan, C. A novel necroptosis inhibitor-necrostatin-21 and its SAR study. Bioorg. Med. Chem. Lett.23, 4903–4906 (2013). ArticleCASPubMed Google Scholar
Morgan, M., Kim, Y.-S. & Liu, Z.-G. Membrane-bound Fas ligand requires RIP1 for efficient activation of caspase-8 within the death-inducing signaling complex. J. Immunol.183, 3278–3284 (2009). ArticleCASPubMed Google Scholar
Kang, T.-B., Yang, S.-H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity38, 27–40 (2013). ArticleCASPubMed Google Scholar
Kurz, T., Gustafsson, B. & Brunk, U. T. Intralysosomal iron chelation protects against oxidative stress-induced cellular damage. FEBS J.273, 3106–3117 (2006). ArticleCASPubMed Google Scholar
Vanden Berghe, T. et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ.17, 922–930 (2010). ArticleCASPubMed Google Scholar
Tan, S., Schubert, D. & Maher, P. Oxytosis: novel form of programmed cell death. Curr. Top. Med. Chem.1, 497–506 (2001). ArticleCASPubMed Google Scholar
Pérez-De La Cruz, V., Carrillo-Mora, P. & Santamaría, A. Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int. J. Tryptophan Res.5, 1–8 (2012). PubMedPubMed Central Google Scholar
Henke, N. et al. The plasma membrane channel ORAI1 mediates detrimental calcium influx caused by endogenous oxidative stress. Cell Death Dis.4, e470 (2013). ArticleCASPubMedPubMed Central Google Scholar
Yamashima, T. Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain–cathepsin cascade' from nematodes to primates. Cell Calcium36, 285–293 (2004). ArticleCASPubMed Google Scholar
Syntichaki, P., Xu, K., Driscoll, M. & Tavernarakis, N. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature419, 939–944 (2002). ArticleCASPubMed Google Scholar
Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab.8, 237–248 (2008). ArticleCASPubMed Google Scholar
Kleikers, P. et al. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J. Mol. Med.90, 1391–1406 (2012). ArticleCASPubMed Google Scholar
Valencia, A. et al. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington's disease. Hum. Mol. Genet.22, 1112–1131 (2013). ArticleCASPubMed Google Scholar
Song, S. X. et al. Attenuation of brain edema and spatial learning de fi cits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats. Mol. Med. Rep.7, 327–331 (2013). ArticleCASPubMed Google Scholar
Zhang, M., Perino, A., Ghigo, A., Hirsch, E. & Shah, A. NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid. Redox Signal.18, 1024–1041 (2013). ArticleCASPubMedPubMed Central Google Scholar
Yazdanpanah, B. et al. Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature460, 1159–1163 (2009). ArticleCASPubMed Google Scholar
Gabelloni, M. L. et al. NADPH oxidase derived reactive oxygen species are involved in human neutrophil IL-1β secretion but not in inflammasome activation. Eur. J. Immunol.43, 3324–3335 (2013). ArticleCASPubMed Google Scholar
Sokolovska, A. et al. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nature Immunol.14, 543–553 (2013). ArticleCAS Google Scholar
Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ.18, 581–588 (2011). ArticleCASPubMedPubMed Central Google Scholar
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science303, 1532–1535 (2004). ArticleCASPubMed Google Scholar
Remijsen, Q. et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res.21, 290–304 (2011). ArticleCASPubMed Google Scholar
Wartha, F. & Henriques-Normark, B. ETosis: a novel cell death pathway. Sci. Signal.1, pe25 (2008). ArticlePubMed Google Scholar
Yipp, B. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nature Med.18, 1386–1393 (2012). ArticleCASPubMed Google Scholar
Elrod, J. & Molkentin, J. Physiologic functions of cyclophilin d and the mitochondrial permeability transition pore. Circ. J.77, 1111–1122 (2013). ArticleCASPubMedPubMed Central Google Scholar
Javadov, S. & Kuznetsov, A. Mitochondrial permeability transition and cell death: the role of cyclophilin D. Front. Physiol.4, 76 (2013). CASPubMedPubMed Central Google Scholar
Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature434, 658–662 (2005). ArticleCASPubMed Google Scholar
Clarke, S., McStay, G. & Halestrap, A. Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J. Biol. Chem.277, 34793–34799 (2002). ArticleCASPubMed Google Scholar
Schinzel, A. C. et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl Acad. Sci. USA102, 12005–12010 (2005). ArticleCASPubMedPubMed Central Google Scholar
Bonora, M. et al. Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle12, 674–683 (2013). ArticleCASPubMedPubMed Central Google Scholar
Giorgio, V. et al. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl Acad. Sci. USA110, 5887–5892 (2013). ArticleCASPubMedPubMed Central Google Scholar
Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature434, 652–658 (2005). ArticleCASPubMed Google Scholar
Basso, E. et al. Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem.280, 18558–18561 (2005). ArticleCASPubMed Google Scholar
Kokoszka, J. E. et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature427, 461–465 (2004). ArticleCASPubMedPubMed Central Google Scholar
Devalaraja-Narashimha, K., Diener, A. & Padanilam, B. Cyclophilin D gene ablation protects mice from ischemic renal injury. Am. J. Physiol. Renal Physiol.297, 59 (2009). ArticleCAS Google Scholar
Piot, C. et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. New Engl. J. Med.359, 473–481 (2008). ArticleCASPubMed Google Scholar
Baumann, K. Cell death: multitasking p53 promotes necrosis. Nature reviews. Mol. Cell Biol.13, 480–481 (2012). CAS Google Scholar
Karch, J. & Molkentin, J. Is p53 the long-sought molecular trigger for cyclophilin D-regulated mitochondrial permeability transition pore formation and necrosis? Circul. Res.111, 1258–1260 (2012). ArticleCAS Google Scholar
Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA110, 12024–12029 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gibson, B. & Kraus, W. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nature Rev. Mol. Cell Biol.13, 411–424 (2012). ArticleCAS Google Scholar
Lonskaya, I. et al. Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. J. Biol. Chem.280, 17076–17083 (2005). ArticleCASPubMed Google Scholar
Bürkle, A. & Virág, L. Poly(ADP-ribose): PARadigms and PARadoxes. Mol. Aspects Med.34, 1046–1065 (2013). ArticlePubMedCAS Google Scholar
Andrabi, S., Dawson, T. & Dawson, V. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann. NY Acad. Sci.1147, 233–241 (2008). ArticleCASPubMed Google Scholar
Los, M. et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell13, 978–988 (2002). ArticleCASPubMedPubMed Central Google Scholar
Simbulan-Rosenthal, C. M. et al. Inhibition of poly(ADP-ribose) polymerase activity is insufficient to induce tetraploidy. Nucleic Acids Res.29, 841–849 (2001). ArticleCASPubMedPubMed Central Google Scholar
Virag, L., Robaszkiewicz, A., Vargas, J. M. & Javier Oliver, F. Poly(ADP-ribose) signaling in cell death. Mol. Aspects Med.34, 1153–1167 (2013). ArticleCASPubMed Google Scholar
Jagtap, P. & Szabó, C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nature Rev. Drug Discov.4, 421–440 (2005). ArticleCAS Google Scholar
Curtin, N. & Szabo, C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol. Aspects Med.34, 1217–56 (2013). ArticleCASPubMed Google Scholar
Jouan-Lanhouet, S. et al. TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ.19, 2003–2014 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sosna, J. et al. TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death. Cell Mol. Life Sci.http://dx.doi.org/10.1007/s00018-013-1381-6 (2013)
Xu, X. et al. The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res.1343, 206–212 (2010). ArticleCASPubMed Google Scholar
Cookson, B. & Brennan, M. Pro-inflammatory programmed cell death. Trends Microbiol.9, 113–114 (2001). ArticleCASPubMed Google Scholar
von Moltke, J., Ayres, J. S., Kofoed, E. M., Chavarria-Smith, J. & Vance, R. E. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol.31, 73–106 (2013). ArticleCASPubMed Google Scholar
Fink, S. & Cookson, B. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol.8, 1812–1825 (2006). ArticleCASPubMed Google Scholar
Brennan, M. & Cookson, B. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol. Microbiol.38, 31–40 (2000). ArticleCASPubMed Google Scholar
Miao, E. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunol.11, 1136–1142 (2010). ArticleCAS Google Scholar
Sauer, J.-D. et al. Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc. Natl Acad. Sci. USA108, 12419–12424 (2011). ArticleCASPubMedPubMed Central Google Scholar
Case, C., Shin, S. & Roy, C. Asc and Ipaf inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila. Infection Immun.77, 1981–1991 (2009). ArticleCAS Google Scholar
Zamboni, D. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nature Immunol.7, 318–325 (2006). ArticleCAS Google Scholar
Derré, I. & Isberg, R. Macrophages from mice with the restrictive Lgn1 allele exhibit multifactorial resistance to Legionella pneumophila. Infection Immun.72, 6221–6229 (2004). ArticleCAS Google Scholar
Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature479, 117–121 (2011). ArticleCASPubMed Google Scholar
Case, C. et al. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc. Natl Acad. Sci. USA110, 1851–1856 (2013). ArticleCASPubMedPubMed Central Google Scholar
Hagar, J., Powell, D., Aachoui, Y., Ernst, R. & Miao, E. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science341, 1250–1253 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rathinam, V. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell150, 606–619 (2012). ArticleCASPubMedPubMed Central Google Scholar
Willingham, S. et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe2, 147–159 (2007). ArticleCASPubMedPubMed Central Google Scholar
Duncan, J. et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J. Immunol.182, 6460–6469 (2009). ArticleCASPubMed Google Scholar
Zhao, Y., Khaminets, A., Hunn, J. & Howard, J. Disruption of the Toxoplasma gondii parasitophorous vacuole by IFNγ-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog.5, e1000288 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Averette, K. et al. Anthrax lethal toxin induced lysosomal membrane permeabilization and cytosolic cathepsin release is Nlrp1b/Nalp1b-dependent. PloS ONE4, e7913 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Holzinger, D. et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J. Leukocyte Biol.92, 1069–1081 (2012). ArticleCASPubMedPubMed Central Google Scholar
Oka, S.-I., Hsu, C.-P. & Sadoshima, J. Regulation of cell survival and death by pyridine nucleotides. Circul. Res.111, 611–627 (2012). ArticleCAS Google Scholar
Kristian, T., Balan, I., Schuh, R. & Onken, M. Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection. J. Neurosci. Res.89, 1946–1955 (2011). ArticleCASPubMed Google Scholar
Belenky, P., Bogan, K. & Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci.32, 12–19 (2007). ArticleCASPubMed Google Scholar
Sattler, R. & Tymianski, M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol.24, 107–129 (2001). ArticleCASPubMed Google Scholar
Yoshida, M. et al. Primate neurons show different vulnerability to transient ischemia and response to cathepsin inhibition. Acta Neuropathol.104, 267–272 (2002). CASPubMed Google Scholar
Bano, D. et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell120, 275–285 (2005). ArticleCASPubMed Google Scholar
Orabi, A. et al. Dantrolene mitigates caerulein-induced pancreatitis in vivo in mice. Am. J. Physiol. Gastrointest. Liver Physiol.299, G196–G204 (2010). ArticleCASPubMedPubMed Central Google Scholar
Staats, K. et al. Dantrolene is neuroprotective in vitro, but does not affect survival in SOD1G93A mice. Neuroscience220, 26–31 (2012). ArticleCASPubMed Google Scholar
Mattson, M., Zhu, H., Yu, J. & Kindy, M. Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J. Neurosci.20, 1358–1364 (2000). ArticleCASPubMedPubMed Central Google Scholar
Yu, G., Zucchi, R., Ronca-Testoni, S. & Ronca, G. Protection of ischemic rat heart by dantrolene, an antagonist of the sarcoplasmic reticulum calcium release channel. Bas. Res. Cardiol95, 137–143 (2000). ArticleCAS Google Scholar
Javadov, S. A. et al. Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc. Res.45, 360–369 (2000). ArticleCASPubMed Google Scholar
Kourtis, N., Nikoletopoulou, V. & Tavernarakis, N. Small heat-shock proteins protect from heat-stroke-associated neurodegeneration. Nature490, 213–218 (2012). ArticleCASPubMed Google Scholar
Artal-Sanz, M., Samara, C., Syntichaki, P. & Tavernarakis, N. Lysosomal biogenesis and function is critical for necrotic cell death in Caenorhabditis elegans. J. Cell Biol.173, 231–239 (2006). ArticleCASPubMedPubMed Central Google Scholar
Aits, S. & Jäättelä, M. Lysosomal cell death at a glance. J. Cell Sci.126, 1905–1912 (2013). ArticleCASPubMed Google Scholar
Kagedal, K., Zhao, M., Svensson, I. & Brunk, U. T. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J.359, 335–343 (2001). ArticleCASPubMedPubMed Central Google Scholar
Feofanov, A. et al. Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochem. J.390, 11–18 (2005). ArticleCASPubMedPubMed Central Google Scholar
Malagoli, D., Marchesini, E. & Ottaviani, E. Lysosomes as the target of yessotoxin in invertebrate and vertebrate cell lines. Toxicol. Lett.167, 75–83 (2006). ArticleCASPubMed Google Scholar
Kreuzaler, P. et al. Stat3 controls lysosomal-mediated cell death in vivo. Nature Cell Biol.13, 303–309 (2011). ArticleCASPubMed Google Scholar
Vanlangenakker, N., Bertrand, M., Bogaert, P., Vandenabeele, P. & Vanden Berghe, T. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis.2, e230 (2011). ArticleCASPubMedPubMed Central Google Scholar
Vince, J. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity36, 215–227 (2012). ArticleCASPubMed Google Scholar
Jamison, J., Gilloteaux, J., Taper, H., Calderon, P. & Summers, J. Autoschizis: a novel cell death. Biochem. Pharmacol.63, 1773–1783 (2002). ArticleCASPubMed Google Scholar
Gilloteaux, J. et al. Cell damage and death by autoschizis in human bladder (RT4) carcinoma cells resulting from treatment with ascorbate and menadione. Ultrastruct. Pathol.34, 140–160 (2010). ArticlePubMed Google Scholar
Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USAhttp://dx.doi.org/10.1073/pnas.1319661110 (2013).
Wilson, C. & Browning, J. Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ.9, 1321–1333 (2002). ArticleCASPubMed Google Scholar
Tenev, T. et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell43, 432–448 (2011). ArticleCASPubMed Google Scholar
Feoktistova, M. et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell43, 449–463 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ch'en, I. L. et al. Antigen-mediated T cell expansion regulated by parallel pathways of death. Proc. Natl Acad. Sci. USA105, 17463–17468 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zou, J. et al. Poly IC triggers a cathepsin D− and IPS-1-dependent pathway to enhance cytokine production and mediate dendritic cell necroptosis. Immunity38, 717–728 (2013). ArticleCASPubMed Google Scholar
Han, W. et al. Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol. Cancer Ther.6, 1641–1649 (2007). ArticleCASPubMed Google Scholar
Basit, F., Cristofanon, S. & Fulda, S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ.20, 1161–1173 (2013). ArticleCASPubMedPubMed Central Google Scholar
Thapa, R. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl Acad. Sci. USA110, 18 (2013). Article Google Scholar
Welz, P. S. et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature477, 330–334 (2011). ArticleCASPubMed Google Scholar
You, Z. et al. Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J. Cereb. Blood Flow Metab.28, 1564–1573 (2008). ArticleCASPubMed Google Scholar
Lim, S. Y., Davidson, S. M., Mocanu, M. M., Yellon, D. M. & Smith, C. C. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc. Drugs Ther.21, 467–469 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rosenbaum, D. M. et al. Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J. Neurosci. Res.88, 1569–1576 (2010). CASPubMedPubMed Central Google Scholar
Trichonas, G. et al. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc. Natl Acad. Sci. USA107, 21695–21700 (2010). ArticleCASPubMedPubMed Central Google Scholar
Murakami, Y. et al. Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proc. Natl Acad. Sci. USA109, 14598–14603 (2012). ArticleCASPubMedPubMed Central Google Scholar
Linkermann, A. et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int.81, 751–761 (2012). ArticleCASPubMed Google Scholar
Bonnet, M. C. et al. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity35, 572–582 (2011). ArticleCASPubMed Google Scholar
Robinson, N. et al. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nature Immunol.13, 954–962 (2012). ArticleCAS Google Scholar
Duprez, L. et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity35, 908–918 (2011). ArticleCASPubMed Google Scholar
Lin, J. et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep.3, 200–210 (2013). ArticleCASPubMed Google Scholar
Colbert, L. et al. Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer119, 3148–3155 (2013). ArticleCASPubMed Google Scholar
Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biol.16, 55–65 (2014). ArticleCASPubMed Google Scholar
Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Research24, 105–121 (2014). ArticleCASPubMed Google Scholar