Mucin dynamics and enteric pathogens (original) (raw)
Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA105, 15064–15069 (2008). Demonstration of the spatial relationship between the intestinal epithelium, the inner and outer mucus layers and the microbiota. ArticleCASPubMedPubMed Central Google Scholar
Johansson, M. E., Holmen Larsson, J. M. & Hansson, G. C. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc. Natl Acad. Sci. USA 25 Jun 2010 (doi:10.1073/pnas.1006451107). Article Google Scholar
Atuma, C., Strugala, V., Allen, A. & Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol.280, G922–G929 (2001). In situmeasurement of the mucus thickness throughout the rodent gastrointestinal tract and observations on the replacement of mucus following its physical removal. ArticleCASPubMed Google Scholar
Stappenbeck, T. S. Paneth cell development, differentiation, and function: new molecular cues. Gastroenterology137, 30–33 (2009). ArticleCASPubMed Google Scholar
Heazlewood, C. K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med.5, e54 (2008). ArticleCASPubMedPubMed Central Google Scholar
Park, S. W. et al. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc. Natl Acad. Sci. USA106, 6950–6955 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zhao, F. et al. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in _Agr2_−/− mice. Dev. Biol.338, 270–279 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell134, 743–756 (2008). ArticleCASPubMedPubMed Central Google Scholar
Brandl, K. et al. Enhanced sensitivity to DSS colitis caused by a hypomorphic Mbtps1 mutation disrupting the ATF6-driven unfolded protein response. Proc. Natl Acad. Sci. USA106, 3300–3305 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature456, 259–263 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell141, 1135–1145 (2010). ArticleCASPubMedPubMed Central Google Scholar
McGuckin, M. A., Eri, R. D., Das, I., Lourie, R. & Florin, T. H. ER stress and the unfolded protein response in intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol.298, G820–G832 (2010). ArticleCASPubMed Google Scholar
Thornton, D. J., Rousseau, K. & McGuckin, M. A. Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol.70, 459–486 (2008). ArticleCASPubMed Google Scholar
Davis, C. W. & Dickey, B. F. Regulated airway goblet cell mucin secretion. Annu. Rev. Physiol.70, 487–512 (2008). ArticleCASPubMed Google Scholar
Rogers, D. F. Mucoactive agents for airway mucus hypersecretory diseases. Respir. Care52, 1176–1193; discussion 1193–1177 (2007). PubMed Google Scholar
Larsson, J. M., Karlsson, H., Sjovall, H. & Hansson, G. C. A complex, but uniform O_-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MS_n. Glycobiology19, 756–766 (2009). ArticleCASPubMed Google Scholar
Matsuo, K., Ota, H., Akamatsu, T., Sugiyama, A. & Katsuyama, T. Histochemistry of the surface mucous gel layer of the human colon. Gut40, 782–789 (1997). ArticleCASPubMedPubMed Central Google Scholar
Henrissat, B., Surolia, A. & Stanley, P. in Essentials of Glycobiology. 2nd edn (eds Varki, A. et al.) (Cold Spring Harbor Laboratory Press, New York, 2009). Google Scholar
Ouellette, A. J. Paneth cells and innate mucosal immunity. Curr. Opin. Gastroenterol.26, 547–553 (2010). ArticlePubMed Google Scholar
Porter, E. M., Bevins, C. L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci.59, 156–170 (2002). ArticleCASPubMed Google Scholar
White, S. H., Wimley, W. C. & Selsted, M. E. Structure, function, and membrane integration of defensins. Curr. Opin. Struct. Biol.5, 521–527 (1995). ArticleCASPubMed Google Scholar
Hristova, K., Selsted, M. E. & White, S. H. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem.272, 24224–24233 (1997). ArticleCASPubMed Google Scholar
Bruno, L. S. et al. Two-hybrid analysis of human salivary mucin MUC7 interactions. Biochim. Biophys. Acta1746, 65–72 (2005). ArticleCASPubMed Google Scholar
Iontcheva, I., Oppenheim, F. G. & Troxler, R. F. Human salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline rich proteins, statherin, and histatins. J. Dent. Res.76, 734–743 (1997). ArticleCASPubMed Google Scholar
Kawakubo, M. et al. Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science305, 1003–1006 (2004). Evidence that a mucin carbohydrate can directly inhibit the growth of a mucus-residing pathogen. ArticleCASPubMed Google Scholar
Gururaja, T. L. et al. Candidacidal activity prompted by N-terminus histatin-like domain of human salivary mucin (MUC7). Biochim. Biophys. Acta1431, 107–119 (1999). ArticleCASPubMed Google Scholar
Strugnell, R. A. & Wijburg, O. L. The role of secretory antibodies in infection immunity. Nature Rev. Microbiol.8, 656–667 (2010). ArticleCAS Google Scholar
Phalipon, A. et al. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity17, 107–115 (2002). ArticleCASPubMed Google Scholar
Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science286, 113–117 (1999). ArticleCASPubMed Google Scholar
Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature422, 522–526 (2003). In vivoevidence that human intestinal defensins can protect against enteric pathogens. ArticleCASPubMed Google Scholar
Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunol.11, 76–83 (2010). ArticleCAS Google Scholar
Salzman, N. H. Microbiota–immune system interaction: an uneasy alliance. Curr. Opin. Microbiol.14, 99–105 (2011). ArticlePubMed Google Scholar
Johansson, M. E., Thomsson, K. A. & Hansson, G. C. Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly bound to the Fcgbp protein. J. Proteome Res.8, 3549–3557 (2009). ArticleCASPubMed Google Scholar
Lai, S. K., Wang, Y. Y., Cone, R., Wirtz, D. & Hanes, J. Altering mucus rheology to “solidify” human mucus at the nanoscale. PLoS ONE4, e4294 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lai, S. K. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl Acad. Sci. USA104, 1482–1487 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tomasetto, C. et al. pS2/TFF1 interacts directly with the VWFC cysteine-rich domains of mucins. Gastroenterology118, 70–80 (2000). ArticleCASPubMed Google Scholar
Newton, J. L., Allen, A., Westley, B. R. & May, F. E. B. The human trefoil peptide, TFF1, is present in different molecular forms that are intimately associated with mucus in normal stomach. Gut46, 312–320 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ruchaud-Sparagano, M. H., Westley, B. R. & May, F. E. The trefoil protein TFF1 is bound to MUC5AC in human gastric mucosa. Cell. Mol. Life Sci.61, 1946–1954 (2004). ArticleCASPubMed Google Scholar
Kindon, H., Pothoulakis, C., Thim, L., Lynchdevaney, G. & Podolsky, D. K. Trefoil peptide protection of intestinal epithelial barrier function: cooperative interaction with mucin glycoprotein. Gastroenterology109, 516–523 (1995). ArticleCASPubMed Google Scholar
Thim, L., Madsen, F. & Poulsen, S. S. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur. J. Clin. Invest.32, 519–527 (2002). ArticleCASPubMed Google Scholar
Raynal, B. D., Hardingham, T. E., Sheehan, J. K. & Thornton, D. J. Calcium-dependent protein interactions in MUC5B provide reversible cross-links in salivary mucus. J. Biol. Chem.278, 28703–28710 (2003). ArticleCASPubMed Google Scholar
Garcia, M. A., Yang, N. & Quinton, P. M. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J. Clin. Invest.119, 2613–2622 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hattrup, C. L. & Gendler, S. J. Structure and function of the cell surface (tethered) mucins. Annu. Rev. Physiol.70, 431–457 (2008). ArticleCASPubMed Google Scholar
Henry, S. et al. Structural and immunochemical identification of Le(a), Le(b), H type 1, and related glycolipids in small intestinal mucosa of a group O Le(a-b-) nonsecretor. Glycoconj. J.14, 209–223 (1997). ArticleCASPubMed Google Scholar
Wreschner, D. H. et al. Generation of ligand-receptor alliances by “SEA” module-mediated cleavage of membrane-associated mucin proteins. Protein Sci.11, 698–706 (2002). ArticleCASPubMedPubMed Central Google Scholar
Macao, B., Johansson, D. G., Hansson, G. C. & Hard, T. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nature Struct. Mol. Biol.13, 71–76 (2006). ArticleCAS Google Scholar
Linden, S. K. et al. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog.5, e1000617 (2009). Elucidation of the mechanisms by which cell surface mucins limit pathogen adhesion to the cell surface. ArticleCASPubMedPubMed Central Google Scholar
Thathiah, A., Blobel, C. P. & Carson, D. D. Tumor necrosis factor-α converting enzyme/ADAM 17 mediates MUC1 shedding. J. Biol. Chem.278, 3386–3394 (2003). ArticleCASPubMed Google Scholar
McGuckin, M. A. et al. Muc1 mucin limits both Helicobacter pylori colonization of the murine gastric mucosa and associated gastritis. Gastroenterology133, 1210–1218 (2007). First demonstration that the deficiency of a cell surface mucin predisposes the host to more severe chronic inflammation during a chronic infection. ArticleCASPubMed Google Scholar
Guang, W. et al. Muc1 cell surface mucin attenuates epithelial inflammation in response to a common mucosal pathogen. J. Biol. Chem.285, 20547–20557 (2010). ArticleCASPubMedPubMed Central Google Scholar
McAuley, J. L. et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J. Clin. Invest.117, 2313–2324 (2007). First demonstration that a cell surface mucin limits both the translocation of enteric pathogens and damage to the gut. ArticleCASPubMedPubMed Central Google Scholar
Schreiber, S. et al. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl Acad. Sci. USA101, 5024–5029 (2004). ArticleCASPubMedPubMed Central Google Scholar
Aspholm-Hurtig, M. et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science305, 519–522 (2004). ArticleCASPubMed Google Scholar
Carvalho, F. et al. MUC1 gene polymorphism and gastric cancer–an epidemiological study. Glycoconj. J.14, 107–111 (1997). ArticleCASPubMed Google Scholar
Vinall, L. E. et al. Altered expression and allelic association of the hypervariable membrane mucin MUC1 in Helicobacter pylori gastritis. Gastroenterology123, 41–49 (2002). ArticleCASPubMed Google Scholar
Silva, F. et al. MUC1 polymorphism confers increased risk for intestinal metaplasia in a Colombian population with chronic gastritis. Eur. J. Hum. Genet.11, 380–384 (2003). ArticleCASPubMed Google Scholar
Magalhaes, A. et al. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology19, 1525–1536 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cooke, C. L. et al. Modification of gastric mucin oligosaccharide expression in rhesus macaques after infection with Helicobacter pylori. Gastroenterology137, 1061–1071 (2009). ArticleCASPubMed Google Scholar
Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nature Med.9, 548–553 (2003). ArticleCASPubMed Google Scholar
Ueno, K. et al. MUC1 mucin is a negative regulator of Toll-like receptor signaling. Am. J. Respir. Cell. Mol. Biol.38, 263–268 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ahmad, R. et al. MUC1 oncoprotein activates the IκB kinase β complex and constitutive NF-κB signalling. Nature Cell Biol.9, 1419–1427 (2007). Evidence that signalling by cell surface mucins modulates inflammatory signalling in epithelial cells. ArticleCASPubMed Google Scholar
Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genet.42, 1118–1125 (2010). ArticleCASPubMed Google Scholar
Bergstrom, K. S. et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog.6, e1000902 (2010). Finding that there is more severe pathology during bacterial infection in the intestine in the absence of the secreted mucin MUC2. ArticleCASPubMedPubMed Central Google Scholar
Hasnain, S. Z. et al. Mucin gene deficiency in mice impairs host resistance to an enteric parasitic infection. Gastroenterology138, 1763–1771 (2010). First evidence that secreted mucins are important components of the TH2-type immune response that mediates expulsion of nematode parasites. ArticleCASPubMed Google Scholar
Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop Colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology131, 117–129 (2006). Finding that a deficiency in intestinal secreted mucins leads to spontaneous intestinal inflammation. ArticleCASPubMed Google Scholar
Hugdahl, M. B., Beery, J. T. & Doyle, M. P. Chemotactic behavior of Campylobacter jejuni. Infect. Immun.56, 1560–1566 (1988). CASPubMedPubMed Central Google Scholar
Tu, Q. V., McGuckin, M. A. & Mendz, G. L. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J. Med. Microbiol.57, 795–802 (2008). ArticleCASPubMed Google Scholar
Ottemann, K. M. & Lowenthal, A. C. Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun.70, 1984–1990 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ramos, H. C., Rumbo, M. & Sirard, J. C. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol.12, 509–517 (2004). ArticleCASPubMed Google Scholar
Celli, J. P. et al. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl Acad. Sci. USA106, 14321–14326 (2009). Demonstration thatH. pylorireduces mucus visocosity in its microenvironment to promote bacterial motility. ArticleCASPubMedPubMed Central Google Scholar
Lidell, M. E., Moncada, D. M., Chadee, K. & Hansson, G. C. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. Proc. Natl Acad. Sci. USA103, 9298–9303 (2006). Finding that there is specific enzymatic destruction of MUC2 polymers in mucus by an enteric amoebic parasite. ArticleCASPubMedPubMed Central Google Scholar
Silva, A. J., Pham, K. & Benitez, J. A. Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. Microbiology149, 1883–1891 (2003). ArticleCASPubMed Google Scholar
Deplancke, B. et al. Selective growth of mucolytic bacteria including Clostridium perfringens in a neonatal piglet model of total parenteral nutrition. Am. J. Clin. Nutr.76, 1117–1125 (2002). ArticleCASPubMed Google Scholar
Sonnenburg, J. L., Angenent, L. T. & Gordon, J. I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nature Immunol.5, 569–573 (2004). ArticleCAS Google Scholar
Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science307, 1955–1959 (2005). Exploration of the altered utilization of mucin carbohydrates by an individual commensal bacterium under different host dietary conditions. ArticleCASPubMed Google Scholar
Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol.105, 2420–2428 (2010). ArticleCASPubMed Google Scholar
Law, G. K., Bertolo, R. F., Adjiri-Awere, A., Pencharz, P. B. & Ball, R. O. Adequate oral threonine is critical for mucin production and gut function in neonatal piglets. Am. J. Physiol. Gastrointest. Liver Physiol.292, G1293–G1301 (2007). ArticleCASPubMed Google Scholar
Siebers, A. & Finlay, B. B. M cells and the pathogenesis of mucosal and systemic infections. Trends Microbiol.4, 22–29 (1996). ArticleCASPubMed Google Scholar
Neutra, M. R., Mantis, N. J., Frey, A. & Giannasca, P. J. The composition and function of M cell apical membranes: implications for microbial pathogenesis. Semin. Immunol.11, 171–181 (1999). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science303, 1662–1665 (2004). ArticleCASPubMed Google Scholar
Macpherson, A. J., McCoy, K. D., Johansen, F. E. & Brandtzaeg, P. The immune geography of IgA induction and function. Mucosal Immunol.1, 11–22 (2008). ArticleCASPubMed Google Scholar
Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog.6, e1001097 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lelouard, H., Reggio, H., Mangeat, P., Neutra, M. & Montcourrier, P. Mucin-related epitopes distinguish M cells and enterocytes in rabbit appendix and Peyer's patches. Infect. Immun.67, 357–367 (1999). CASPubMedPubMed Central Google Scholar
Lelouard, H. et al. Glycocalyx on rabbit intestinal M cells displays carbohydrate epitopes from Muc2. Infect. Immun.69, 1061–1071 (2001). ArticleCASPubMedPubMed Central Google Scholar
Vazquez-Torres, A. & Fang, F. C. Cellular routes of invasion by enteropathogens. Curr. Opin. Microbiol.3, 54–59 (2000). ArticleCASPubMed Google Scholar
Jones, B., Pascopella, L. & Falkow, S. Entry of microbes into the host: using M cells to break the mucosal barrier. Curr. Opin. Immunol.7, 474–478 (1995). ArticleCASPubMed Google Scholar
Walk, S. T., Blum, A. M., Ewing, S. A., Weinstock, J. V. & Young, V. B. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm. Bowel Dis.16, 1841–1849 (2010). ArticlePubMed Google Scholar
Frank, D. N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis.17, 189–194 (2010). Google Scholar
Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology139, 1844–1854 (2010). ArticlePubMed Google Scholar
Hoffmann, C. et al. Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect. Immun.77, 4668–4678 (2009). ArticleCASPubMedPubMed Central Google Scholar
Dalby, A. B., Frank, D. N., St. Amand, A. L., Bendele, A. M. & Pace, N. R. Culture-independent analysis of indomethacin-induced alterations in the rat gastrointestinal microbiota. Appl. Environ. Microbiol.72, 6707–6715 (2006). ArticleCASPubMedPubMed Central Google Scholar
Guttman, J. A. & Finlay, B. B. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta1788, 832–841 (2009). ArticleCASPubMed Google Scholar
Sakaguchi, T., Kohler, H., Gu, X., McCormick, B. A. & Reinecker, H. C. Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell. Microbiol.4, 367–381 (2002). ArticleCASPubMed Google Scholar
Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M. & Cossart, P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell84, 923–932 (1996). ArticleCASPubMed Google Scholar
Goosney, D. L., Gruenheid, S. & Finlay, B. B. Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annu. Rev. Cell Dev. Biol.16, 173–189 (2000). ArticleCASPubMed Google Scholar
Katz, J., Sambandam, V., Wu, J. H., Michalek, S. M. & Balkovetz, D. F. Characterization of _Porphyromonas gingivalis_-induced degradation of epithelial cell junctional complexes. Infect. Immun.68, 1441–1449 (2000). ArticleCASPubMedPubMed Central Google Scholar
Amieva, M. R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science300, 1430–1434 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nava, P., Lopez, S., Arias, C. F., Islas, S. & Gonzalez-Mariscal, L. The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. J. Cell Sci.117, 5509–5519 (2004). ArticleCASPubMed Google Scholar
Meyerholz, D. K. et al. Early epithelial invasion by Salmonella enterica serovar Typhimurium DT104 in the swine ileum. Vet. Pathol.39, 712–720 (2002). ArticleCASPubMed Google Scholar
Ren, J. et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell5, 163–175 (2004). First demonstration that cell surface mucins modulate apoptosis in epithelial cells. ArticleCASPubMedPubMed Central Google Scholar
Wei, X., Xu, H. & Kufe, D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell7, 167–178 (2005). ArticleCASPubMed Google Scholar
Kim, K. C., Lee, B. C., Pou, S. & Ciccolella, D. Effects of activation of polymorphonuclear leukocytes on airway goblet cell mucin release in a co-culture system. Inflamm Res.52, 258–262 (2003). ArticleCASPubMed Google Scholar
Fischer, B. M., Krunkosky, T. M., Wright, D. T., Dolanokeefe, M. & Adler, K. B. Tumor necrosis factor-alpha (TNF-α) stimulates mucin secretion and gene expression in airway epithelium in vitro. Chest107, S133–S135 (1995). Article Google Scholar
Hollande, E., Fanjul, M., Claret, S., Forguelafitte, M. E. & Bara, J. Effects of VIP on the regulation of mucin secretion in cultured human pancreatic cancer cells (Capan-1). In Vitro Cell. Dev. Biol.31, 227–233 (1995). ArticleCAS Google Scholar
Smirnova, M. G., Guo, L., Birchall, J. P. & Pearson, J. P. LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell. Immunol.221, 42–49 (2003). ArticleCASPubMed Google Scholar
Kishioka, C., Okamoto, K., Kim, J. & Rubin, B. K. Regulation of secretion from mucous and serous cells in the excised ferret trachea. Respir. Physiol.126, 163–171 (2001). ArticleCASPubMed Google Scholar
Smirnova, M. G., Birchall, J. P. & Pearson, J. P. TNF-alpha in the regulation of MUC5AC secretion: some aspects of cytokine-induced mucin hypersecretion on the in vitro model. Cytokine12, 1732–1736 (2000). ArticleCASPubMed Google Scholar
Enss, M. L. et al. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res.49, 162–169 (2000). ArticleCASPubMed Google Scholar
Klinkspoor, J. H. et al. Mucin secretion by the human colon cell line LS174T is regulated by bile salts. Glycobiology9, 13–19 (1999). ArticleCASPubMed Google Scholar
Voynow, J. A. et al. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol.20, 835–843 (1999). Article Google Scholar
Jarry, A., Vallette, G., Branka, J. E. & Laboisse, C. Direct secretory effect of interleukin-1 via type I receptors in human colonic mucous epithelial cells (HT29-C1.16E). Gut38, 240–242 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kim, K. C., Park, H. R., Shin, C. Y., Akiyama, T. & Ko, K. H. Nucleotide-induced mucin release from primary hamster tracheal surface epithelial cells involves the P2u purinoceptor. Eur. Resp. J.9, 542–548 (1996). ArticleCAS Google Scholar
Gottke, M. & Chadee, K. Exogenous nitric oxide stimulates mucin secretion from LS174T colonic adenocarcinoma cells. Inflamm. Res.45, 209–212 (1996). ArticleCASPubMed Google Scholar
Tam, P. Y. & Verdugo, P. Control of mucus hydration as a Donnan equilibrium process. Nature292, 340–342 (1981). ArticleCASPubMed Google Scholar
Hill, R. R., Cowley, H. M. & Andremont, A. Influence of colonizing micro-flora on the mucin histochemistry of the neonatal mouse colon. Histochem. J.22, 102–105 (1990). ArticleCASPubMed Google Scholar
Enss, M. L. et al. Response of germfree rat colonic mucous cells to peroral endotoxin application. Eur. J. Cell Biol.71, 99–104 (1996). CASPubMed Google Scholar
Kandori, H., Hirayama, K., Takeda, M. & Doi, K. Histochemical, lectin-histochemical and morphometrical characteristics of intestinal goblet cells of germfree and conventional mice. Exp. Anim.45, 155–160 (1996). ArticleCASPubMed Google Scholar
Fukushima, K. et al. Colonization of microflora in mice: mucosal defense against luminal bacteria. J. Gastroenterol.34, 54–60 (1999). ArticleCASPubMed Google Scholar
Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science313, 1126–1130 (2006). Finding that the production of specific antimicrobial molecules is regulated by the commensal microbiota. ArticleCASPubMedPubMed Central Google Scholar
Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunol.4, 269–273 (2003). ArticleCAS Google Scholar
Sharma, R. & Schumacher, U. Carbohydrate expression in the intestinal mucosa. Adv. Anat. Embryol. Cell Biol.160, III–IX, 1–91 (2001). CASPubMed Google Scholar
Freitas, M., Axelsson, L. G., Cayuela, C., Midtvedt, T. & Trugnan, G. Microbial-host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem. Cell Biol.118, 149–161 (2002). CASPubMed Google Scholar
George, S. et al. Lectin binding profile of the small intestine of five-week-old pigs in response to the use of chlortetracycline as a growth promotant and under gnotobiotic conditions. J. Anim. Sci.85, 1640–1650 (2007). ArticleCASPubMed Google Scholar
Whittaker, L. et al. Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. Am. J. Respir. Cell. Mol. Biol.27, 593–602 (2002). ArticleCASPubMed Google Scholar
Artis, D. et al. Tumor necrosis factor α is a critical component of interleukin 13-mediated protective T helper cell type 2 responses during helminth infection. J. Exp. Med.190, 953–962 (1999). ArticleCASPubMedPubMed Central Google Scholar
Park, K. S. et al. SPDEF regulates goblet cell hyperplasia in the airway epithelium. J. Clin. Invest.117, 978–988 (2007). First demonstration of the importance of the TH2 cytokine mediated production of the SPDEF transcription factor on goblet cell differentiation. ArticleCASPubMedPubMed Central Google Scholar
Gregorieff, A. et al. The Ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology137, 1333–1345.e3 (2009). ArticleCASPubMed Google Scholar
Noah, T. K., Kazanjian, A., Whitsett, J. & Shroyer, N. F. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. Exp. Cell Res.316, 452–465 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chen, G. et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J. Clin. Invest.119, 2914–2924 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest.118, 534–544 (2008). CASPubMedPubMed Central Google Scholar
Chen, Y. et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J. Biol. Chem.278, 17036–17043 (2003). ArticleCASPubMed Google Scholar
Andrianifahanana, M. et al. IFN-γ-induced expression of MUC4 in pancreatic cancer cells is mediated by STAT-1 upregulation: a novel mechanism for IFN-γ response. Oncogene26, 7251–7261 (2007). ArticleCASPubMed Google Scholar
Ahn, D. H. et al. TNF-alpha activates MUC2 transcription via NF-kappaB but inhibits via JNK activation. Cell Physiol. Biochem.15, 29–40 (2005). ArticleCASPubMed Google Scholar
Dabbagh, K. et al. IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J.Immunol.162, 6233–6237 (1999). CASPubMed Google Scholar
Longphre, M. et al. Allergen-induced IL-9 directly stimulates mucin transcription in respiratory epithelial cells. J. Clin. Invest.104, 1375–1382 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y. D. et al. Regulation of IL-1β-mediated MUC2 gene in NCI-H292 human airway epithelial cells. Biochem. Biophys. Res. Commun.274, 112–116 (2000). ArticleCASPubMed Google Scholar
Shim, J. J. et al. IL-13 induces mucin production by stimulating epidermal growth factor receptors and by activating neutrophils. Am. J. Physiol. Lung Cell. Mol. Physiol.280, L134–L140 (2001). ArticleCASPubMed Google Scholar
Smirnova, M. G., Kiselev, S. L., Birchall, J. P. & Pearson, J. P. Up-regulation of mucin secretion in HT29-MTX cells by the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6. Eur. Cytokine Netw.12, 119–125 (2001). CASPubMed Google Scholar
Kim, Y. D. et al. Interleukin-1β induces MUC2 gene expression and mucin secretion via activation of PKC-MEK/ERK, and PI3K in human airway epithelial cells. J. Korean Med. Sci.17, 765–771 (2002). ArticleCASPubMedPubMed Central Google Scholar
Song, J. S. et al. Nitric oxide induces MUC5AC mucin in respiratory epithelial cells through PKC and ERK dependent pathways. Respir. Res.8, 28 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wu, Y. M., Nowack, D. D., Omenn, G. S. & Haab, B. B. Mucin glycosylation is altered by pro-inflammatory signaling in pancreatic-cancer cells. J. Proteome Res.8, 1876–1886 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kanoh, A. et al. Interleukin-4 induces specific pp-GalNAc-T expression and alterations in mucin _O_-glycosylation in colonic epithelial cells. Biochim. Biophys. Acta1780, 577–584 (2008). ArticleCASPubMed Google Scholar
Groux-Degroote, S. et al. IL-6 and IL-8 increase the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of sialylated and/or sulfated LewisX epitopes in the human bronchial mucosa. Biochem. J.410, 213–223 (2008). ArticleCASPubMed Google Scholar
Beum, P. V., Basma, H., Bastola, D. R. & Cheng, P. W. Mucin biosynthesis: upregulation of core 2 β1,6 _N_-acetylglucosaminyltransferase by retinoic acid and Th2 cytokines in a human airway epithelial cell line. Am. J. Physiol. Lung Cell. Mol. Physiol.288, L116–L124 (2005). ArticleCASPubMed Google Scholar
Yamauchi, J. et al. Altered expression of goblet cell- and mucin glycosylation-related genes in the intestinal epithelium during infection with the nematode Nippostrongylus brasiliensis in rat. APMIS114, 270–278 (2006). ArticleCASPubMed Google Scholar
Takeda, K. et al. Direct effects of IL-4/IL-13 and the nematode Nippostrongylus brasiliensis on intestinal epithelial cells in vitro. Parasite Immunol.32, 420–429 (2010). ArticleCASPubMed Google Scholar
Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol.167, 1882–1885 (2001). ArticleCASPubMed Google Scholar
Yanagihara, K., Seki, M. & Cheng, P. W. Lipopolysaccharide induces mucus cell metaplasia in mouse lung. Am. J. Respir. Cell. Mol. Biol.24, 66–73 (2001). ArticleCASPubMed Google Scholar
Lemjabbar, H. & Basbaum, C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nature Med.8, 41–46 (2002). ArticleCASPubMed Google Scholar
Dohrman, A. et al. Mucin gene (MUC2 and MUC5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim. Biophys. Acta1406, 251–259 (1998). ArticleCASPubMed Google Scholar
Caballero-Franco, C., Keller, K., De Simone, C. & Chadee, K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol.292, G315–G322 (2007). ArticleCASPubMed Google Scholar
Lievin- Le Moal, V., Servin, A. L. & Coconnier-Polter, M. H. The increase in mucin exocytosis and the upregulation of MUC genes encoding for membrane-bound mucins induced by the thiol-activated exotoxin listeriolysin O is a host cell defence response that inhibits the cell-entry of Listeria monocytogenes. Cell. Microbiol.7, 1035–1048 (2005). ArticleCAS Google Scholar
Slomiany, B. L. & Slomiany, A. Cytosolic phospholipase A2 activation in Helicobacter pylori lipopolysaccharide-induced interference with gastric mucin synthesis. IUBMB Life58, 217–223 (2006). ArticleCASPubMed Google Scholar
Linden, S. K., Florin, T. H. & McGuckin, M. A. Mucin dynamics in intestinal bacterial infection. PLoS ONE3, e3952 (2008). Description of progressive changes in cell surface and secreted intestinal mucins during infection with an attaching and effacing pathogen. ArticleCASPubMedPubMed Central Google Scholar
Boshuizen, J. A. et al. Homeostasis and function of goblet cells during rotavirus infection in mice. Virology337, 210–221 (2005). ArticleCASPubMed Google Scholar
Hasnain, S. Z., Thornton, D. J. & Grencis, R. K. Changes in the mucosal barrier during acute and chronic Trichuris muris infection. Parasite Immunol.33, 45–55 (2011). ArticleCASPubMedPubMed Central Google Scholar
Guk, S. M. et al. CD4+ T-cell-dependent goblet cell proliferation and expulsion of Gymnophalloides seoi from the intestine of C57BL/6 mice. J. Parasitol.95, 581–590 (2009). ArticleCASPubMed Google Scholar
Hoang, V. C., Williams, M. A. & Simpson, H. V. Effects of weaning and infection with Teladorsagia circumcincta on mucin carbohydrate profiles of early weaned lambs. Vet. Parasitol.171, 354–360 (2010). ArticleCASPubMed Google Scholar
Li, R. W. et al. Mucin biosynthesis in the bovine goblet cell induced by Cooperia oncophora infection. Vet. Parasitol.165, 281–289 (2009). ArticleCASPubMed Google Scholar
Fontaine, O. et al. Setting research priorities to reduce global mortality from childhood diarrhoea by 2015. PLoS Med.6, e41 (2009). ArticlePubMed Google Scholar
Linden, S. K., Driessen, K. M. & McGuckin, M. A. Improved in vitro model systems for gastrointestinal infection by choice of cell line, pH, microaerobic conditions and optimization of culture conditions. Helicobacter12, 341–353 (2007). ArticlePubMed Google Scholar
Wickstrom, C., Herzberg, M. C., Beighton, D. & Svensater, G. Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology155, 2866–2872 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tsai, H. H., Dwarakanath, A. D., Hart, C. A., Milton, J. D. & Rhodes, J. M. Increased faecal mucin sulphatase activity in ulcerative colitis: a potential target for treatment. Gut36, 570–576 (1995). ArticleCASPubMedPubMed Central Google Scholar
Corfield, A. P. et al. The roles of enteric bacterial sialidase, sialate _O_-acetyl esterase and glycosulfatase in the degradation of human colonic mucin. Glycoconj. J.10, 72–81 (1993). ArticleCASPubMed Google Scholar
Roberton, A. M. et al. A novel bacterial mucinase, glycosulfatase, is associated with bacterial vaginosis. J. Clin. Microbiol.43, 5504–5508 (2005). ArticleCASPubMedPubMed Central Google Scholar
Martens, E. C., Roth, R., Heuser, J. E. & Gordon, J. I. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J. Biol. Chem.284, 18445–18457 (2009). ArticleCASPubMedPubMed Central Google Scholar
Falk, P., Hoskins, L. C. & Larson, G. Bacteria of the human intestinal microbiota produce glycosidases specific for lacto-series glycosphingolipids. J. Biochem.108, 466–474 (1990); erratum 109, 798 (1991). ArticleCASPubMed Google Scholar
Vanderhoeven, J. S. & Camp, P. J. M. The use of lectins in monitoring degradation of oligosaccharide chains in mucin by oral streptococci. Caries Res.28, 257–261 (1994). ArticleCAS Google Scholar
Jansen, H. J., Hart, C. A., Rhodes, J. M., Saunders, J. R. & Smalley, J. W. A novel mucin-sulphatase activity found in Burkholderia cepacia and Pseudomonas aeruginosa. J. Med. Microbiol.48, 551–557 (1999). ArticleCASPubMed Google Scholar
Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F. & Nataro, J. P. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect. Immun.67, 5587–5596 (1999). CASPubMedPubMed Central Google Scholar
Slomiany, B. L. et al. Campylobacter pyloridis degrades mucin and undermines gastric mucosal integrity. Biochem. Biophys. Res. Commun.144, 307–314 (1987). ArticleCASPubMed Google Scholar
Terra, V. S., Homer, K. A., Rao, S. G., Andrew, P. W. & Yesilkaya, H. Characterization of novel β-galactosidase activity that contributes to glycoprotein degradation and virulence in Streptococcus pneumoniae. Infect. Immun.78, 348–357 (2010). ArticleCASPubMed Google Scholar
Yesilkaya, H., Manco, S., Kadioglu, A., Terra, V. S. & Andrew, P. W. The ability to utilize mucin affects the regulation of virulence gene expression in Streptococcus pneumoniae. FEMS Microbiol. Lett.278, 231–235 (2008). ArticleCASPubMed Google Scholar
Mantle, M. & Rombough, C. Growth in and breakdown of purified rabbit small intestinal mucin by Yersinia enterocolitica. Infect. Immun.61, 4131–4138 (1993). CASPubMedPubMed Central Google Scholar
Ashida, H. et al. Characterization of two different endo-α-_N_-acetylgalactosaminidases from probiotic and pathogenic enterobacteria, Bifidobacterium longum and Clostridium perfringens. Glycobiology18, 727–734 (2008). ArticleCASPubMed Google Scholar
Szabady, R. L., Yanta, J. H., Halladin, D. K., Schofield, M. J. & Welch, R. A. TagA is a secreted protease of Vibrio cholerae that specifically cleaves mucin glycoproteins. Microbiology157, 516–525 (2011). ArticleCASPubMedPubMed Central Google Scholar
Grys, T. E., Walters, L. L. & Welch, R. A. Characterization of the StcE protease activity of Escherichia coli O157:H7. J. Bacteriol.188, 4646–4653 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cervantes-Sandoval, I., Serrano-Luna Jde, J., Garcia-Latorre, E., Tsutsumi, V. & Shibayama, M. Mucins in the host defence against Naegleria fowleri and mucinolytic activity as a possible means of evasion. Microbiology154, 3895–3904 (2008). ArticleCASPubMed Google Scholar