Molecular mechanisms of antibiotic resistance (original) (raw)
Walker, D. & Fowler, T. Annual Report of the Chief Medical Officer: Volume Two, 2011: Infections and the Rise of Antimicrobial Resistance (Department of Health, 2011). Google Scholar
Hampton, T. Report reveals scope of US antibiotic resistance threat. JAMA310, 1661–1663 (2013). ArticleCASPubMed Google Scholar
Chuanchuen, R., Karkhoff-Schweizer, R. R. & Schweizer, H. P. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am. J. Infect. Control31, 124–127 (2003). ArticlePubMed Google Scholar
Zhu, L., Lin, J., Ma, J., Cronan, J. E. & Wang, H. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob. Agents Chemother.54, 689–698 (2010). ArticleCASPubMed Google Scholar
Randall, C. P., Mariner, K. R., Chopra, I. & O'Neill, A. J. The target of daptomycin is absent from Escherichia coli and other Gram-negative pathogens. Antimicrob. Agents Chemother.57, 637–639 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tsuchido, T. & Takano, M. Sensitization by heat treatment of Escherichia coli K-12 cells to hydrophobic antibacterial compounds. Antimicrob. Agents Chemother.32, 1680–1683 (1988). ArticleCASPubMedPubMed Central Google Scholar
Blake, K. L. & O'Neill, A. J. Transposon library screening for identification of genetic loci participating in intrinsic susceptibility and acquired resistance to antistaphylococcal agents. J. Antimicrob. Chemother.68, 12–16 (2013). ArticleCASPubMed Google Scholar
Liu, A. et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob. Agents Chemother.54, 1393–1403 (2010). ArticleCASPubMedPubMed Central Google Scholar
Barbee, L. A., Soge, O. O., Holmes, K. K. & Golden, M. R. In vitro synergy testing of novel antimicrobial combination therapies against Neisseria gonorrhoeae. J. Antimicrob. Chemother.69, 1572–1578 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hornsey, M., Longshaw, C., Phee, L. & Wareham, D. W. In vitro activity of telavancin in combination with colistin versus Gram-negative bacterial pathogens. Antimicrob. Agents Chemother.56, 3080–3085 (2012). ArticleCASPubMedPubMed Central Google Scholar
Principe, L. et al. In vitro activity of doripenem in combination with various antimicrobials against multidrug-resistant Acinetobacter baumannii: possible options for the treatment of complicated infection. Microb. Drug Resist.19, 407–414 (2013). ArticleCASPubMed Google Scholar
Fernández, L. & Hancock, R. E. W. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev.25, 661–681 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wright, G. D. Molecular mechanisms of antibiotic resistance. Chem. Commun.47, 4055–4061 (2011). ArticleCAS Google Scholar
Kojima, S. & Nikaido, H. Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels. Proc. Natl Acad. Sci. USA110, E2629–E2634 (2013). ArticlePubMedPubMed Central Google Scholar
Vargiu, A. V. & Nikaido, H. Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc. Natl Acad. Sci. USA109, 20637–20642 (2012). ArticlePubMedPubMed Central Google Scholar
Tran, Q. T., Williams, S., Farid, R., Erdemli, G. & Pearlstein, R. The translocation kinetics of antibiotics through porin OmpC: insights from structure-based solvation mapping using WaterMap. Proteins81, 291–299 (2013). ArticleCASPubMed Google Scholar
Tamber, S. & Hancock, R. E. On the mechanism of solute uptake in Pseudomonas. Front. Biosci.8, s472–s483 (2003). ArticleCASPubMed Google Scholar
Baroud, M. et al. Underlying mechanisms of carbapenem resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int. J. Antimicrob. Agents41, 75–79 (2013). ArticleCASPubMed Google Scholar
Lavigne, J. P. et al. An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates. Int. J. Antimicrob. Agents41, 130–136 (2013). ArticleCASPubMed Google Scholar
Poulou, A. et al. Outbreak caused by an ertapenem-resistant, CTX-M-15-producing Klebsiella pneumoniae sequence type 101 clone carrying an OmpK36 porin variant. J. Clin. Microbiol.51, 3176–3182 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wozniak, R. A. & Waldor, M. K. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nature Rev. Microbiol.8, 552–563 (2010). ArticleCAS Google Scholar
Wozniak, A. et al. Porin alterations present in non-carbapenemase-producing Enterobacteriaceae with high and intermediate levels of carbapenem resistance in Chile. J. Med. Microbiol.61, 1270–1279 (2012). ArticleCASPubMed Google Scholar
Novais, Â. et al. Spread of an OmpK36-modified ST15 Klebsiella pneumoniae variant during an outbreak involving multiple carbapenem-resistant Enterobacteriaceae species and clones. Eur. J. Clin. Microbiol. Infecti. Dis.31, 3057–3063 (2012). ArticleCAS Google Scholar
Tangden, T., Adler, M., Cars, O., Sandegren, L. & Lowdin, E. Frequent emergence of porin-deficient subpopulations with reduced carbapenem susceptibility in ESBL-producing Escherichia coli during exposure to ertapenem in an in vitro pharmacokinetic model. J. Antimicrob. Chemother.68, 1319–1326 (2013). ArticleCASPubMed Google Scholar
Papagiannitsis, C. C. et al. OmpK35 and OmpK36 porin variants associated with specific sequence types of Klebsiella pneumoniae. J. Chemother.25, 250–254 (2013). ArticleCASPubMed Google Scholar
Floyd, J. L., Smith, K. P., Kumar, S. H., Floyd, J. T. & Varela, M. F. LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob. Agents Chemother.54, 5406–5412 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hu, R. M., Liao, S. T., Huang, C. C., Huang, Y. W. & Yang, T. C. An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS ONE7, e51053 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kim, C. et al. The mechanism of heterogeneous β-lactam resistance in MRSA: key role of the stringent stress response. PLoS ONE8, e82814 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ogawa, W., Onishi, M., Ni, R., Tsuchiya, T. & Kuroda, T. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene498, 177–182 (2012). ArticleCASPubMed Google Scholar
Dolejska, M., Villa, L., Poirel, L., Nordmann, P. & Carattoli, A. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance nodulation cell division/multidrug efflux pump. J. Antimicrob. Chemother.68, 34–39 (2013). ArticleCASPubMed Google Scholar
Piddock, L. J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev.19, 382–402 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hinchliffe, P., Symmons, M. F., Hughes, C. & Koronakis, V. Structure and operation of bacterial tripartite pumps. Annu. Rev. Microbiol.67, 221–242 (2013). ArticleCASPubMed Google Scholar
Ruggerone, P., Murakami, S., Pos, K. M. & Vargiu, A. V. RND efflux pumps: structural information translated into function and inhibition mechanisms. Curr. Top. Med. Chem.13, 3079–3100 (2013). ArticleCASPubMed Google Scholar
Eicher, T. et al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc. Natl Acad. Sci. USA109, 5687–5692 (2012). ArticlePubMedPubMed Central Google Scholar
Hung, L.-W. et al. Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. J. Struct. Funct. Genom.14, 71–75 (2013). ArticleCAS Google Scholar
Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. & Yamaguchi, A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature443, 173–179 (2006). ArticleCASPubMed Google Scholar
Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K. & Yamaguchi, A. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature480, 565–569 (2011). ArticleCASPubMed Google Scholar
Du, D. et al. Structure of the AcrAB-TolC multidrug efflux pump. Nature509, 512–515 (2014). This article describes the first structure based on data from a complete tripartite efflux system and determines the stoichiometry of the system and key interactions between residues. ArticleCASPubMedPubMed Central Google Scholar
Symmons, M. F., Bokma, E., Koronakis, E., Hughes, C. & Koronakis, V. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc. Natl Acad. Sci. USA106, 7173–7178 (2009). ArticlePubMedPubMed Central Google Scholar
Janganan, T. K., Bavro, V. N., Zhang, L., Borges-Walmsley, M. I. & Walmsley, A. R. Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump. Mol. Microbiol.88, 590–602 (2013). ArticleCASPubMedPubMed Central Google Scholar
Janganan, T. K. et al. Evidence for the assembly of a bacterial tripartite multidrug pump with a stoichiometry of 3:6:3. J. Biol. Chem.286, 26900–26912 (2011). ArticleCASPubMedPubMed Central Google Scholar
Stegmeier, J. F., Polleichtner, G., Brandes, N., Hotz, C. & Andersen, C. Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps. Biochemistry45, 10303–10312 (2006). ArticleCASPubMed Google Scholar
Yum, S. et al. Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J. Mol. Biol.387, 1286–1297 (2009). ArticleCASPubMed Google Scholar
Everett, M. J., Jin, Y. F., Ricci, V. & Piddock, L. J. Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrob. Agents Chemother.40, 2380–2386 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kosmidis, C. et al. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents40, 204–209 (2012). ArticleCASPubMed Google Scholar
Pumbwe, L. & Piddock, L. J. V. Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother.44, 2861–2864 (2000). ArticleCASPubMedPubMed Central Google Scholar
Zalucki, Y. M., Dhulipala, V. & Shafer, W. M. Dueling regulatory properties of a transcriptional activator (MtrA) and repressor (MtrR) that control efflux pump gene expression in Neisseria gonorrhoeae. mBio3, e00446-12 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bailey, A. M. et al. RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J. Bacteriol.192, 1607–1616 (2010). ArticleCASPubMedPubMed Central Google Scholar
Abouzeed, Y. M., Baucheron, S. & Cloeckaert, A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother.52, 2428–2434 (2008). ArticleCASPubMedPubMed Central Google Scholar
Alekshun, M. N. & Levy, S. B. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob. Agents Chemother.41, 2067–2075 (1997). ArticleCASPubMedPubMed Central Google Scholar
Baucheron, S. et al. ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant salmonella enterica serovar kentucky ST198. Front. Microbiol.4, 213 (2013). ArticlePubMedPubMed Central Google Scholar
Baucheron, S. et al. Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother.69, 2400–2406 (2014). ArticleCASPubMed Google Scholar
Schindler, B. D. et al. Functional consequences of substitution mutations in MepR, a repressor of the Staphylococcus aureus mepA multidrug efflux pump gene. J. Bacteriol.195, 3651–3662 (2013). ArticleCASPubMedPubMed Central Google Scholar
Pomposiello, P. J., Bennik, M. H. & Demple, B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J. Bacteriol.183, 3890–3902 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kaatz, G. W., Thyagarajan, R. V. & Seo, S. M. Effect of promoter region mutations and mgrA overexpression on transcription of norA, which encodes a Staphylococcus aureus multidrug efflux transporter. Antimicrob. Agents Chemother.49, 161–169 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kaczmarek, F. S. et al. Genetic and molecular characterization of β-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob. Agents Chemother.48, 1630–1639 (2004). ArticleCASPubMedPubMed Central Google Scholar
Olliver, A., Vallé, M., Chaslus-Dancla, E. & Cloeckaert, A. Role of an acrR mutation in multidrug resistance of _in vitro_-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol. Lett.238, 267–272 (2004). CASPubMed Google Scholar
van der Straaten, T., Janssen, R., Mevius, D. J. & van Dissel, J. T. Salmonella gene rma (ramA) and multiple-drug-resistant Salmonella enterica serovar typhimurium. Antimicrob. Agents Chemother.48, 2292–2294 (2004). ArticleCASPubMedPubMed Central Google Scholar
Warner, D. M., Shafer, W. M. & Jerse, A. E. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC–MtrD–MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol. Microbiol.70, 462–478 (2008). ArticleCASPubMedPubMed Central Google Scholar
Webber, M. A. & Piddock, L. J. V. Absence of mutations in marRAB or soxRS in _acrB_-overexpressing fluoroquinolone-resistant clinical and veterinary isolates of Escherichia coli. Antimicrob. Agents Chemother.45, 1550–1552 (2001). ArticleCASPubMedPubMed Central Google Scholar
Webber, M. A., Talukder, A. & Piddock, L. J. V. Contribution of mutation at amino acid 45 of AcrR to acrB expression and ciprofloxacin resistance in clinical and veterinary Escherichia coli Isolates. Antimicrob. Agents Chemother.49, 4390–4392 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T. & Yamaguchi, A. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol. Microbiol.55, 1113–1126 (2005). ArticleCASPubMed Google Scholar
Nikaido, E. et al. Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses. Gut Pathog.4, 5 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nikaido, E., Shirosaka, I., Yamaguchi, A. & Nishino, K. Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat. Microbiology157, 648–655 (2011). ArticleCASPubMed Google Scholar
Deng, X. et al. Expression of multidrug resistance efflux pump gene norA is iron responsive in Staphylococcus aureus. J. Bacteriol.194, 1753–1762 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mercante, A. D. et al. MpeR regulates the mtr efflux locus in Neisseria gonorrhoeae and modulates antimicrobial resistance by an iron-responsive mechanism. Antimicrob. Agents Chemother.56, 1491–1501 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, K. et al. The expression of ABC efflux pump, Rv1217c–Rv1218c, and its association with multidrug resistance of Mycobacterium tuberculosis in China. Curr. Microbiol.66, 222–226 (2013). ArticleCASPubMed Google Scholar
Kumar, N. et al. Crystal structure of the transcriptional regulator Rv1219c of Mycobacterium tuberculosis. Protein Sci.23, 423–432 (2014). ArticleCASPubMedPubMed Central Google Scholar
Yamasaki, S. et al. The crystal structure of multidrug-resistance regulator RamR with multiple drugs. Nature Commun.4, 2078 (2013). ArticleCAS Google Scholar
Billal, D. S., Feng, J., Leprohon, P., Legare, D. & Ouellette, M. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations. BMC Genomics12, 512 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gao, W. et al. Two novel point mutations in clinical Staphylococcus aureus reduce linezolid susceptibility and switch on the stringent response to promote persistent infection. PLoS Pathog.6, e1000944 (2010). ArticleCASPubMedPubMed Central Google Scholar
Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin. Infect. Dis.34, 482–492 (2002). ArticleCASPubMed Google Scholar
Unemo, M. et al. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother.56, 1273–1280 (2012). ArticleCASPubMedPubMed Central Google Scholar
Katayama, Y., Ito, T. & Hiramatsu, K. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother.44, 1549–1555 (2000). ArticleCASPubMedPubMed Central Google Scholar
Shore, A. C. et al. Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother.55, 3765–3773 (2011). ArticleCASPubMedPubMed Central Google Scholar
Garcia-Ãlvarez, L. et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis.11, 595–603 (2011). This paper reports the identification of a new allele that is undetectable by conventional diagnostic tests. ArticleCASPubMedPubMed Central Google Scholar
Shore, A. C. & Coleman, D. C. Staphylococcal cassette chromosome mec: recent advances and new insights. Int. J. Med. Microbiol.303, 350–359 (2013). ArticleCASPubMed Google Scholar
Stegger, M. et al. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin. Microbiol. Infect.18, 395–400 (2012). ArticleCASPubMed Google Scholar
Cartwright, E. J. P. et al. Use of vitek 2 antimicrobial susceptibility profile to identify mecC in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol.51, 2732–2734 (2013). ArticleCASPubMedPubMed Central Google Scholar
Skov, R. et al. Phenotypic detection of _mecC_-MRSA: cefoxitin is more reliable than oxacillin. J. Antimicrob. Chemother.69, 133–135 (2014). ArticleCASPubMed Google Scholar
Long, K. S., Poehlsgaard, J., Kehrenberg, C., Schwarz, S. & Vester, B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob. Agents Chemother.50, 2500–2505 (2006). ArticleCASPubMedPubMed Central Google Scholar
Shen, J., Wang, Y. & Schwarz, S. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother.68, 1697–1706 (2013). ArticleCASPubMed Google Scholar
Zhang, W. J. et al. Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr. J. Antimicrob. Chemother.69, 385–389 (2014). ArticleCASPubMed Google Scholar
Fritsche, T. R., Castanheira, M., Miller, G. H., Jones, R. N. & Armstrong, E. S. Detection of methyltransferases conferring high-level resistance to aminoglycosides in Enterobacteriaceae from Europe, North America, and Latin America. Antimicrob. Agents Chemother.52, 1843–1845 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hidalgo, L. et al. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK. J. Antimicrob. Chemother.68, 1543–1550 (2013). ArticleCASPubMed Google Scholar
Vetting, M. W. et al. Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. J. Biol. Chem.286, 25265–25273 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cai, Y., Chai, D., Wang, R., Liang, B. & Bai, N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J. Antimicrob. Chemother.67, 1607–1615 (2012). ArticleCASPubMed Google Scholar
Lim, L. M. et al. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy30, 1279–1291 (2010). ArticleCASPubMedPubMed Central Google Scholar
Adams, M. D. et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob. Agents Chemother.53, 3628–3634 (2009). ArticleCASPubMedPubMed Central Google Scholar
Beceiro, A. et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob. Agents Chemother.55, 3370–3379 (2011). ArticleCASPubMedPubMed Central Google Scholar
Fernandez, L. et al. Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR–ParS. Antimicrob. Agents Chemother.54, 3372–3382 (2010). ArticleCASPubMedPubMed Central Google Scholar
Miller, A. K. et al. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients. Antimicrob. Agents Chemother.55, 5761–5769 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cannatelli, A. et al. In vivo emergence of colistin resistance in Klebsiella pneumoniae producing KPC-type carbapenemases mediated by insertional inactivation of the PhoQ/PhoP mgrB regulator. Antimicrob. Agents Chemother.57, 5521–5526 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cannatelli, A. et al. MgrB inactivation is a common mechanism of colistin resistance in KPC carbapenemase-producing Klebsiella pneumoniae of clinical origin. Antimicrob. Agents Chemother.58, 5696–5703 (2014). ArticleCASPubMedPubMed Central Google Scholar
Mishra, N. N. et al. Emergence of daptomycin resistance in daptomycin-naive rabbits with methicillin-resistant Staphylococcus aureus prosthetic joint infection is associated with resistance to host defense cationic peptides and mprF polymorphisms. PLoS ONE8, e71151 (2013). ArticleCASPubMedPubMed Central Google Scholar
Davlieva, M., Zhang, W., Arias, C. A. & Shamoo, Y. Biochemical characterization of cardiolipin synthase mutations associated with daptomycin resistance in enterococci. Antimicrob. Agents Chemother.57, 289–296 (2013). ArticleCASPubMedPubMed Central Google Scholar
Miller, C. et al. Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance. Antimicrob. Agents Chemother.57, 5373–5383 (2013). ArticleCASPubMedPubMed Central Google Scholar
Diaz, L. et al. Whole-genome analyses of Enterococcus faecium isolates with diverse daptomycin MICs. Antimicrob. Agents Chemother.58, 4527–4534 (2014). ArticleCASPubMedPubMed Central Google Scholar
Tran, T. T. et al. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. mBio4, e00281-13 (2013). This study identifies a novel mode of daptomycin resistance in which redistribution of the target away from a key area of the cell results in resistance in enterococci. ArticleCASPubMedPubMed Central Google Scholar
Abraham, E. P. & Chain, E. An enzyme from bacteria able to destroy penicillin. 1940. Rev. Infect. Dis.10, 677–678 (1988). ArticleCASPubMed Google Scholar
Livermore, D. M. Defining an extended-spectrum beta-lactamase. Clin. Microbiol. Infect.14 (Suppl. 1), 3–10 (2008). ArticleCASPubMed Google Scholar
Nordmann, P., Poirel, L., Walsh, T. R. & Livermore, D. M. The emerging NDM carbapenemases. Trends Microbiol.19, 588–595 (2011). ArticleCASPubMed Google Scholar
Voulgari, E., Poulou, A., Koumaki, V. & Tsakris, A. Carbapenemase-producing Enterobacteriaceae: now that the storm is finally here, how will timely detection help us fight back? Future Microbiol.8, 27–39 (2013). ArticleCASPubMed Google Scholar
Woodford, N., Turton, J. F. & Livermore, D. M. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev.35, 736–755 (2011). ArticleCASPubMed Google Scholar
Johnson, A. P. & Woodford, N. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J. Med. Microbiol.62, 499–513 (2013). ArticleCASPubMed Google Scholar
Lynch, J. P., 3rd, Clark, N. M. & Zhanel, G. G. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert Opin. Pharmacother.14, 199–210 (2013). ArticleCASPubMed Google Scholar
Rossolini, G. M., D'Andrea, M. M. & Mugnaioli, C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbiol. Infect.14 (Suppl. 1), 33–41 (2008). ArticleCASPubMed Google Scholar
Poirel, L., Bonnin, R. A. & Nordmann, P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. Infect. Genet. Evol.12, 883–893 (2012). ArticleCASPubMed Google Scholar
Zhao, W. H. & Hu, Z. Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit. Rev. Microbiol.39, 79–101 (2013). ArticleCASPubMed Google Scholar
Dhanji, H. et al. Molecular epidemiology of fluoroquinolone-resistant ST131 Escherichia coli producing CTX-M extended-spectrum β-lactamases in nursing homes in Belfast, UK. J. Antimicrob. Chemother.66, 297–303 (2011). ArticleCASPubMed Google Scholar
Cottell, J. L. et al. Complete sequence and molecular epidemiology of IncK epidemic plasmid encoding blaCTX-M-14. Emerg. Infect. Dis.17, 645–652 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cottell, J. L., Webber, M. A. & Piddock, L. J. Persistence of transferable extended-spectrum-β-lactamase resistance in the absence of antibiotic pressure. Antimicrob. Agents Chemother.56, 4703–4706 (2012). ArticleCASPubMedPubMed Central Google Scholar
Dhanji, H. et al. Dissemination of pCT-like IncK plasmids harboring CTX-M-14 extended-spectrum β-lactamase among clinical Escherichia coli isolates in the United Kingdom. Antimicrob. Agents Chemother.56, 3376–3377 (2012). ArticleCASPubMedPubMed Central Google Scholar
Queenan, A. M., Shang, W., Flamm, R. & Bush, K. Hydrolysis and inhibition profiles of β-lactamases from molecular classes A to D with doripenem, imipenem, and meropenem. Antimicrob. Agents Chemother.54, 565–569 (2010). ArticleCASPubMed Google Scholar
Tzouvelekis, L. S., Markogiannakis, A., Psichogiou, M., Tassios, P. T. & Daikos, G. L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol. Rev.25, 682–707 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yigit, H. et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother.45, 1151–1161 (2001). ArticleCASPubMedPubMed Central Google Scholar
Deshpande, L. M., Jones, R. N., Fritsche, T. R. & Sader, H. S. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program (2000–2004). Microb. Drug Resist.12, 223–230 (2006). ArticleCASPubMed Google Scholar
Qi, Y. et al. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J. Antimicrob. Chemother.66, 307–312 (2011). ArticleCASPubMed Google Scholar
Leavitt, A., Chmelnitsky, I., Carmeli, Y. & Navon-Venezia, S. Complete nucleotide sequence of KPC-3-encoding plasmid pKpQIL in the epidemic Klebsiella pneumoniae sequence type 258. Antimicrob. Agents Chemother.54, 4493–4496 (2010). ArticleCASPubMedPubMed Central Google Scholar
Woodford, N. et al. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother.48, 4793–4799 (2004). ArticleCASPubMedPubMed Central Google Scholar
Woodford, N. et al. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J. Antimicrob. Chemother.62, 1261–1264 (2008). ArticleCASPubMed Google Scholar
Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis.10, 597–602 (2010). ArticleCASPubMedPubMed Central Google Scholar
Giske, C. G. et al. Diverse sequence types of Klebsiella pneumoniae contribute to the dissemination of _bla_NDM-1 in India, Sweden, and the United Kingdom. Antimicrob. Agents Chemother.56, 2735–2738 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kumarasamy, K. & Kalyanasundaram, A. Emergence of Klebsiella pneumoniae isolate co-producing NDM-1 with KPC-2 from India. J. Antimicrob. Chemother.67, 243–244 (2012). ArticleCASPubMed Google Scholar
Walsh, T. R., Weeks, J., Livermore, D. M. & Toleman, M. A. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect. Dis.11, 355–362 (2011). ArticlePubMed Google Scholar
Nordmann, P., Poirel, L., Carrer, A., Toleman, M. A. & Walsh, T. R. How to detect NDM-1 producers. J. Clin. Microbiol.49, 718–721 (2011). ArticlePubMedPubMed Central Google Scholar
Shakil, S. et al. New Delhi metallo-β-lactamase (NDM-1): an update. J. Chemother.23, 263–265 (2011). ArticleCASPubMed Google Scholar
Decousser, J. W. et al. Outbreak of NDM-1-producing Acinetobacter baumannii in France, January to May 2013. Euro Surveill.18, 20547 (2013). ArticlePubMed Google Scholar
Wright, G. D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Delivery Rev.57, 1451–1470 (2005). ArticleCAS Google Scholar
Norris, A. L. & Serpersu, E. H. Ligand promiscuity through the eyes of the aminoglycoside N3 acetyltransferase IIa. Protein Sci.22, 916–928 (2013). ArticleCASPubMedPubMed Central Google Scholar
Romanowska, J., Reuter, N. & Trylska, J. Comparing aminoglycoside binding sites in bacterial ribosomal RNA and aminoglycoside modifying enzymes. Proteins81, 63–80 (2013). ArticleCASPubMed Google Scholar
Qin, S. et al. Identification of a novel genomic island conferring resistance to multiple aminoglycoside antibiotics in Campylobacter coli. Antimicrob. Agents Chemother.56, 5332–5339 (2012). ArticleCASPubMedPubMed Central Google Scholar
Spanogiannopoulos, P., Waglechner, N., Koteva, K. & Wright, G. D. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc. Natl Acad. Sci. USA111, 7102–7107 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bowser, T. E. et al. Novel anti-infection agents: small-molecule inhibitors of bacterial transcription factors. Bioorgan Med. Chem. Lett.17, 5652–5655 (2007). ArticleCAS Google Scholar
Decousser, J. W., Poirel, L. & Nordmann, P. Characterization of a chromosomally encoded extended-spectrum class A β-lactamase from Kluyvera cryocrescens. Antimicrob. Agents Chemother.45, 3595–3598 (2001). ArticleCASPubMedPubMed Central Google Scholar
Humeniuk, C. et al. β-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother.46, 3045–3049 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wellington, E. M. et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis.13, 155–165 (2013). ArticleCASPubMed Google Scholar
D'Costa, V. M. et al. Inactivation of the lipopeptide antibiotic daptomycin by hydrolytic mechanisms. Antimicrob. Agents Chemother.56, 757–764 (2012). ArticleCASPubMedPubMed Central Google Scholar
Perry, J. A. & Wright, G. D. The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front. Microbiol.4, 138 (2013). ArticlePubMedPubMed Central Google Scholar