Astrocyte dysfunction in neurological disorders: a molecular perspective (original) (raw)
Parpura, V. et al. Glutamate-mediated astrocyte–neuron signalling. Nature369, 744–747 (1994). ArticleCASPubMed Google Scholar
Steinhäuser, C., Jabs, R. & Kettenmann, H. Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus4, 19–35 (1994). ArticlePubMed Google Scholar
Jabs, R. et al. Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J. Cell Sci.118, 3791–3803 (2005). ArticleCASPubMed Google Scholar
Matthias, K. et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci.23, 1750–1758 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wallraff, A., Odermatt, B., Willecke, K. & Steinhäuser, C. Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia48, 36–43 (2004). ArticlePubMed Google Scholar
Verkhratsky, A. & Steinhäuser, C. Ion channels in glial cells. Brain Res. Rev.32, 380–412 (2000). ArticleCASPubMed Google Scholar
Kettenmann, H. & Steinhäuser, C. In Neuroglia 2nd edn (eds Kettenmann, H. & Ransom, B. R.) 131–145 (Oxford Univ. Press, 2005). Google Scholar
Higashi, K. et al. An inwardly rectifying K+ channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell Physiol.281, C922–C931 (2001). ArticleCASPubMed Google Scholar
Verkman, A. S. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci.118, 3225–3232 (2005). ArticleCASPubMed Google Scholar
Amiry-Moghaddam, M., Frydenlund, D. S. & Ottersen, O. P. Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience129, 999–1010 (2004). ArticleCASPubMed Google Scholar
Theis, M., Sohl, G., Eiberger, J. & Willecke, K. Emerging complexities in identity and function of glial connexins. Trends Neurosci.28, 188–195 (2005). ArticleCASPubMed Google Scholar
Nedergaard, M., Ransom, B. & Goldman, S. A. New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci.26, 523–530 (2003). ArticleCASPubMed Google Scholar
Bergles, D. E., Diamond, J. S. & Jahr, C. E. Clearance of glutamate inside the synapse and beyond. Curr. Opin. Neurobiol.9, 293–298 (1999). ArticleCASPubMed Google Scholar
Volterra, A. & Meldolesi, J. Astrocytes, from brain glue to communication elements: the revolution continues. Nature Rev. Neurosci.6, 626–640 (2005). ArticleCAS Google Scholar
Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci.6, 43–50 (2003). ArticleCASPubMed Google Scholar
Mulligan, S. J. & MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature431, 195–199 (2004). ArticleCASPubMed Google Scholar
Takano, T. et al. Astrocyte-mediated control of cerebral blood flow. Nature Neurosci.9, 260–267 (2006). ArticleCASPubMed Google Scholar
Blümcke, I., Thom, M. & Wiestler, O. D. Ammon's horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol.12, 199–211 (2002). PubMed Google Scholar
De Lanerolle, N. C. & Lee, T. S. New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy Behav.7, 190–203 (2005). ArticlePubMed Google Scholar
Kivi, A. et al. Effects of barium on stimulus-induced rises of [K+]o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. Eur. J. Neurosci.12, 2039–2048 (2000). ArticleCASPubMed Google Scholar
Hinterkeuser, S. et al. Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur. J. Neurosci.12, 2087–2096 (2000). References 22 and 23 show the downregulation of inwardly rectifying K+ currents and the impairment of Ba2+-sensitive K+-buffering in the sclerotic hippocampus from epilepsy patients. ArticleCASPubMed Google Scholar
Bordey, A. & Sontheimer, H. Properties of human glial cells associated with epileptic seizure foci. Epilepsy Res.32, 286–303 (1998). ArticleCASPubMed Google Scholar
Schröder, W. et al. Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia41, S181–S184 (2000). ArticlePubMed Google Scholar
Binder, D. K. et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia (in the press).
Eid, T. et al. Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proc. Natl Acad. Sci. USA102, 1193–1198 (2005). Reports that in patients with AHS the density of AQP4 water channels at perivascular end-feet is reduced. The perturbed water flux through astrocytes entails impaired buffering of extracellular potassium. ArticleCASPubMedPubMed Central Google Scholar
Amiry-Moghaddam, M. et al. An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc. Natl Acad. Sci. USA100, 2106–2111 (2003). Using a mouse model with defective anchoring of AQP4 to the cytoskeleton, the authors document the importance of proper subcellular segregation for aquaporin function in astrocytes under ischaemic stressin vivo. ArticleCASPubMedPubMed Central Google Scholar
Glass, M. & Dragunow, M. Neurochemical and morphological changes associated with human epilepsy. Brain Res. Rev.21, 29–41 (1995). ArticleCASPubMed Google Scholar
Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science276, 1699–1702 (1997). ArticleCASPubMed Google Scholar
Rothstein, J. D. et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron16, 675–686 (1996). ArticleCASPubMed Google Scholar
Campbell, S. L. & Hablitz, J. J. Glutamate transporters regulate excitability in local networks in rat neocortex. Neuroscience127, 625–635 (2004). ArticleCASPubMed Google Scholar
Demarque, M. et al. Glutamate transporters prevent the generation of seizures in the developing rat neocortex. J. Neurosci.24, 3289–3294 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wong, M. et al. Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann. Neurol.54, 251–256 (2003). ArticleCASPubMed Google Scholar
Tessler, S., Danbolt, N. C., Faull, R. L. M., Storm-Mathisen, J. & Emson, P. C. Expression of the glutamate transporters in human temporal lobe epilepsy. Neuroscience88, 1083–1091 (1999). ArticleCASPubMed Google Scholar
Mathern, G. W. et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology52, 453–472 (1999). ArticleCASPubMed Google Scholar
Proper, E. A. et al. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain125, 32–43 (2002). ArticleCASPubMed Google Scholar
During, M. J. & Spencer, D. D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet341, 1607–1610 (1993). ArticleCASPubMed Google Scholar
Eid, T. et al. Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet363, 28–37 (2004). ArticleCASPubMed Google Scholar
Petroff, O. A., Errante, L. D., Rothman, D. L., Kim, J. H. & Spencer, D. D. Glutamate–glutamine cycling in the epileptic human hippocampus. Epilepsia43, 703–710 (2002). References 39 and 40 indicate that in epilepsy in humans downregulation of astroglial glutamine synthetase disturbs the conversion of glutamate and its accumulation in the extracellular space. ArticleCASPubMed Google Scholar
Rothstein, J. D. et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature433, 73–77 (2005). Identifies β-lactam antibiotics as potential therapeutic agents for the treatment of diseases associated with excitotoxic degeneration through upregulation of the astroglial glutamate transporter EAAT2. ArticleCASPubMed Google Scholar
Brusa, R. et al. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science270, 1677–1680 (1995). ArticleCASPubMed Google Scholar
Seifert, G. et al. Changes in flip/flop splicing of astroglial AMPA receptors in human temporal lobe epilepsy. Epilepsia43 (Suppl. 5), 162–167 (2002). ArticleCASPubMed Google Scholar
Seifert, G., Hüttmann, K., Schramm, J. & Steinhäuser, C. Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon's horn sclerosis. J. Neurosci.24, 1996–2003 (2004). The authors show that aberrant AMPA receptor splicing in astrocytes of the sclerotic human hippocampus affects the kinetics of AMPA receptor desensitization, which might contribute to seizure generation. ArticleCASPubMedPubMed Central Google Scholar
Schröder, W., Seifert, G., Hüttmann, K., Hinterkeuser, S. & Steinhäuser, C. AMPA receptor-mediated modulation of inward rectifier K+ channels in astrocytes of mouse hippocampus. Mol. Cell Neurosci.19, 447–458 (2002). ArticleCASPubMed Google Scholar
Whitney, K. D. & McNamara, J. O. GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J. Neurosci.20, 7307–7316 (2000). ArticleCASPubMedPubMed Central Google Scholar
Manning, T. J. Jr & Sontheimer, H. Spontaneous intracellular calcium oscillations in cortical astrocytes from a patient with intractable childhood epilepsy (Rasmussen's encephalitis). Glia21, 332–337 (1997). ArticlePubMed Google Scholar
Steinhäuser, C. & Seifert, G. Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur. J. Pharmacol.447, 227–237 (2002). ArticlePubMed Google Scholar
Tang, F. R. & Lee, W. L. Expression of the group II and III metabotropic glutamate receptors in the hippocampus of patients with mesial temporal lobe epilepsy. J. Neurocytol.30, 137–143 (2001). ArticleCASPubMed Google Scholar
Aronica, E. et al. Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in taylor-type focal cortical dysplasia. Epilepsia44, 785–795 (2003). ArticleCASPubMed Google Scholar
Aronica, E. et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur. J. Neurosci.17, 2106–2118 (2003). ArticlePubMed Google Scholar
Kang, N., Xu, J., Xu, Q., Nedergaard, M. & Kang, J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J. Neurophysiol.94, 4121–4130 (2005). ArticleCASPubMed Google Scholar
Tian, G. F. et al. An astrocytic basis of epilepsy. Nature Med.11, 973–981 (2005). Reports that, in acute epilepsy models, glutamate released from astrocytes causes paroxysmal depolarization shifts in neurons. Several antiepileptic drugs were shown to reduce astrocytic [Ca2+]ielevations and therefore astrocytes might be considered as new targets for antiepileptic treatments. ArticleCASPubMed Google Scholar
Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N. Engl. J. Med.326, 1464–1468 (1992). ArticleCASPubMed Google Scholar
Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J. & Kuncl, R. W. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol.38, 73–84 (1995). References 54 and 55 describe the loss of glial glutamate transporters in ALS and identify astrocytes as crucial mediators of excitotoxicity and motor neuron loss. ArticleCASPubMed Google Scholar
Sasaki, S., Komori, T. & Iwata, M. Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropathol. (Berl.)100, 138–144 (2000). ArticleCAS Google Scholar
Yamada, K. et al. Glutamate transporter GLT-1 is transiently localized on growing axons of the mouse spinal cord before establishing astrocytic expression. J. Neurosci.18, 5706–5713 (1998). ArticleCASPubMedPubMed Central Google Scholar
Schmitt, A., Asan, E., Puschel, B., Jons, T. & Kugler, P. Expression of the glutamate transporter GLT1 in neural cells of the rat central nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience71, 989–1004 (1996). ArticleCASPubMed Google Scholar
Lin, C. L. et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron20, 589–602 (1998). Shows that in patients with ALS, loss of astroglial EAAT2 is due to aberrant RNA splicing. ArticleCASPubMed Google Scholar
Meyer, T. et al. The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J. Neurol. Sci.170, 45–50 (1999). ArticleCASPubMed Google Scholar
Honig, L. S., Chambliss, D. D., Bigio, E. H., Carroll, S. L. & Elliott, J. L. Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology55, 1082–1088 (2000). ArticleCASPubMed Google Scholar
Volterra, A., Trotti, D., Tromba, C., Floridi, S. & Racagni, G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci.14, 2924–2932 (1994). ArticleCASPubMedPubMed Central Google Scholar
Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature362, 59–62 (1993). First report that mutation of the Cu/Zn superoxide dismutase (SOD1) gene mediates neurodegeneration in hereditary ALS. ArticleCASPubMed Google Scholar
Trotti, D., Rolfs, A., Danbolt, N. C., Brown, R. H. Jr & Hediger, M. A. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nature Neurosci.2, 427–433 (1999). Shows that mutant SOD1 leads to neurotoxicity through inactivation of the astroglial glutamate transporter EAAT2. ArticleCASPubMed Google Scholar
Howland, D. S. et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA99, 1604–1609 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bruijn, L. I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron18, 327–338 (1997). ArticleCASPubMed Google Scholar
Pedersen, W. A. et al. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol.44, 819–824 (1998). ArticleCASPubMed Google Scholar
Bruijn, L. I., Miller, T. M. & Cleveland, D. W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci.27, 723–749 (2004). ArticleCASPubMed Google Scholar
Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. & Rouleau, G. A. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci.21, 3369–3374 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lino, M. M., Schneider, C. & Caroni, P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci.22, 4825–4832 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gong, Y. H., Parsadanian, A. S., Andreeva, A., Snider, W. D. & Elliott, J. L. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci.20, 660–665 (2000). ArticleCASPubMedPubMed Central Google Scholar
Clement, A. M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science302, 113–117 (2003). ArticleCASPubMed Google Scholar
Urushitani, M. et al. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nature Neurosci.9, 108–118 (2006). Suggests that, in ALS, astrocytes contribute to the secretion of mutant SOD1, which, in turn, produces microgliosis and motor neuron death. ArticleCASPubMed Google Scholar
Rao, S. D., Yin, H. Z. & Weiss, J. H. Disruption of glial glutamate transport by reactive oxygen species produced in motor neurons. J. Neurosci.23, 2627–2633 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rao, S. D. & Weiss, J. H. Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis. Trends Neurosci.27, 17–23 (2004). ArticleCASPubMed Google Scholar
Levine, J. B., Kong, J. M., Nadler, M. & Xu, Z. S. Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS). Glia28, 215–224 (1999). ArticleCASPubMed Google Scholar
Almer, G. et al. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann. Neurol.49, 176–185 (2001). ArticleCASPubMed Google Scholar
Yasojima, K., Tourtellotte, W. W., McGeer, E. G. & McGeer, P. L. Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology57, 952–956 (2001). ArticleCASPubMed Google Scholar
Yamagata, K., Andreasson, K. I., Kaufmann, W. E., Barnes, C. A. & Worley, P. F. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron11, 371–386 (1993). ArticleCASPubMed Google Scholar
Pepicelli, O. et al. In vivo activation of _N_-methyl-D-aspartate receptors in the rat hippocampus increases prostaglandin E2 extracellular levels and triggers lipid peroxidation through cyclooxygenase-mediated mechanisms. J. Neurochem.81, 1028–1034 (2002). ArticleCASPubMed Google Scholar
Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature391, 281–285 (1998). ArticleCASPubMed Google Scholar
Drachman, D. B. et al. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann. Neurol.52, 771–778 (2002). ArticleCASPubMed Google Scholar
Aronica, E., Catania, M. V., Geurts, J., Yankaya, B. & Troost, D. Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience105, 509–520 (2001). ArticleCASPubMed Google Scholar
Catania, M. V., Aronica, E., Yankaya, B. & Troost, D. Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord. J. Neurosci.21, RC148 (2001). Suggests that in human ALS aberrant expression of neuronal NOS in reactive astrocytes is involved in pathogenesis. ArticleCASPubMedPubMed Central Google Scholar
Trotti, D. et al. Peroxynitrite inhibits glutamate transporter subtypes. J. Biol. Chem.271, 5976–5979 (1996). ArticleCASPubMed Google Scholar
Beal, M. F. et al. Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann. Neurol.42, 644–654 (1997). ArticleCASPubMed Google Scholar
Bruno, V. et al. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J. Cereb. Blood Flow Metab.21, 1013–1033 (2001). ArticleCASPubMed Google Scholar
Amiry-Moghaddam, M. et al. α-Syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood–brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J.18, 542–544 (2004). ArticleCASPubMed Google Scholar
Manley, G. T. et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Med.6, 159–163 (2000). ArticleCASPubMed Google Scholar
Lo, A. C. et al. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet. J. Cereb. Blood Flow Metab.25, 998–1011 (2005). ArticleCASPubMed Google Scholar
Da, T. & Verkman, A. S. Aquaporin-4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Invest. Ophthalmol. Vis. Sci.45, 4477–4483 (2004). ArticlePubMed Google Scholar
Dalloz, C. et al. Targeted inactivation of dystrophin gene product Dp71: phenotypic impact in mouse retina. Hum. Mol. Genet.12, 1543–1554 (2003). ArticleCASPubMed Google Scholar
Hibino, H., Fujita, A., Iwai, K., Yamada, M. & Kurachi, Y. Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J. Biol. Chem.279, 44065–44073 (2004). ArticleCASPubMed Google Scholar
Thomzig, A. et al. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K–ATP channels. Mol. Cell. Neurosci.18, 671–690 (2001). ArticleCASPubMed Google Scholar
Stonehouse, A. H. et al. Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem. Cell Biol.112, 457–465 (1999). ArticleCASPubMed Google Scholar
Farahani, R. et al. Alterations in metabolism and gap junction expression may determine the role of astrocytes as 'good samaritans' or executioners. Glia50, 351–361 (2005). ArticlePubMed Google Scholar
Nakase, T., Söhl, G., Theis, M., Willecke, K. & Naus, C. C. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. Am. J. Pathol.164, 2067–2075 (2004). ArticleCASPubMedPubMed Central Google Scholar
Perez Velazquez, J. L., Kokarovtseva, L., Sarbaziha, R., Jeyapalan, Z. & Leshchenko, Y. Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage. Eur. J. Neurosci.23, 1–10 (2006). ArticlePubMed Google Scholar
Nicchia, G. P. et al. New possible roles for aquaporin-4 in astrocytes: cell cytoskeleton and functional relationship with connexin43. FASEB J.19, 1674–1676 (2005). ArticleCASPubMed Google Scholar
Rozyczka, J., Figiel, M. & Engele, J. Chronic endothelin exposure inhibits connexin43 expression in cultured cortical astroglia. J. Neurosci. Res.79, 303–309 (2005). ArticleCASPubMed Google Scholar
Takano, T. et al. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc. Natl Acad. Sci. USA102, 16466–16471 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S. & Ransom, B. R. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci.23, 3588–3596 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fujita, H., Sato, K., Wen, T. C., Peng, Y. & Sakanaka, M. Differential expressions of glycine transporter 1 and three glutamate transporter mRNA in the hippocampus of gerbils with transient forebrain ischemia. J. Cereb. Blood Flow Metab.19, 604–615 (1999). ArticleCASPubMed Google Scholar
Maragakis, N. J. & Rothstein, J. D. Glutamate transporters in neurologic disease. Arch. Neurol.58, 365–370 (2001). ArticleCASPubMed Google Scholar
Hamann, M., Rossi, D. J., Marie, H. & Attwell, D. Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischaemia. Eur. J. Neurosci.15, 308–314 (2002). ArticlePubMed Google Scholar
Mitani, A. & Tanaka, K. Functional changes of glial glutamate transporter GLT-1 during ischemia: an in vivo study in the hippocampal CA1 of normal mice and mutant mice lacking GLT-1. J. Neurosci.23, 7176–7182 (2003). ArticleCASPubMedPubMed Central Google Scholar
Rao, V. L. et al. Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. J. Neurosci.21, 1876–1883 (2001). ArticleCASPubMedPubMed Central Google Scholar
Selkirk, J. V. et al. Role of the GLT-1 subtype of glutamate transporter in glutamate homeostasis: the GLT-1-preferring inhibitor WAY-855 produces marginal neurotoxicity in the rat hippocampus. Eur. J. Neurosci.21, 3217–3228 (2005). ArticlePubMed Google Scholar
Schluter, K., Figiel, M., Rozyczka, J. & Engele, J. CNS region-specific regulation of glial glutamate transporter expression. Eur. J. Neurosci.16, 836–842 (2002). ArticlePubMed Google Scholar
Reagan, L. P. et al. Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: reversal by tianeptine. Proc. Natl Acad. Sci. USA101, 2179–2184 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zschocke, J. et al. Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. J. Biol. Chem.280, 34924–34932 (2005). ArticleCASPubMed Google Scholar
Feustel, P. J., Jin, Y. & Kimelberg, H. K. Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke35, 1164–1168 (2004). ArticleCASPubMed Google Scholar
Yamamoto-Mizuma, S. et al. Altered properties of volume-sensitive osmolyte and anion channels (VSOACs) and membrane protein expression in cardiac and smooth muscle myocytes from Clcn3−/− mice. J. Physiol.557, 439–456 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jentsch, T. J., Stein, V., Weinreich, F. & Zdebik, A. A. Molecular structure and physiological function of chloride channels. Physiol. Rev.82, 503–568 (2002). ArticleCASPubMed Google Scholar
Kimelberg, H. K. et al. Acute treatment with tamoxifen reduces ischemic damage following middle cerebral artery occlusion. Neuroreport11, 2675–2679 (2000). ArticleCASPubMed Google Scholar
Zhang, Y. et al. Behavioral and histological neuroprotection by tamoxifen after reversible focal cerebral ischemia. Exp. Neurol.196, 41–46 (2005). ArticleCASPubMed Google Scholar
Osuka, K., Feustel, P. J., Mongin, A. A., Tranmer, B. I. & Kimelberg, H. K. Tamoxifen inhibits nitrotyrosine formation after reversible middle cerebral artery occlusion in the rat. J. Neurochem.76, 1842–1850 (2001). Suggests that tamoxifen is an inhibitor of Ca2+/calmodulin-dependent NOS and the subsequent peroxynitrite production in transient focal cerebral ischaemia, which might represent one mechanism for the neuroprotective effect of tamoxifen. ArticleCASPubMed Google Scholar
Kimelberg, H. K. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia50, 389–397 (2005). ArticlePubMed Google Scholar
Williams, S. M. et al. Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia49, 520–541 (2005). ArticlePubMed Google Scholar
Serini, G. & Bussolino, F. Common cues in vascular and axon guidance. Physiology (Bethesda)19, 348–354 (2004). CAS Google Scholar
Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature436, 193–200 (2005). ArticleCASPubMed Google Scholar
Tsang, M. C., Lo, A. C., Cheung, P. T., Chung, S. S. & Chung, S. K. Perinatal hypoxia-/ischemia-induced endothelin-1 mRNA in astrocyte-like and endothelial cells. Neuroreport12, 2265–2270 (2001). ArticleCASPubMed Google Scholar
Ehrenreich, H. The astrocytic endothelin system: toward solving a mystery focus on 'distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca2+ signaling'. Am. J. Physiol.277, C614–C615 (1999). ArticleCASPubMed Google Scholar
Acker, T., Beck, H. & Plate, K. H. Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and -2 suggests an important role of astrocytes in cerebellar vascularization. Mech. Dev.108, 45–57 (2001). ArticleCASPubMed Google Scholar
West, H., Richardson, W. D. & Fruttiger, M. Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development132, 1855–1862 (2005). ArticleCASPubMed Google Scholar
Sun, Y. et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest.111, 1843–1851 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H., Vutskits, L., Pepper, M. S. & Kiss, J. Z. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J. Cell Biol.163, 1375–1384 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kosacka, J. et al. Angiopoietin-1 promotes neurite outgrowth from dorsal root ganglion cells positive for Tie-2 receptor. Cell Tissue Res.320, 11–19 (2005). ArticleCASPubMed Google Scholar
Ward, N. L., Putoczki, T., Mearow, K., Ivanco, T. L. & Dumont, D. J. Vascular-specific growth factor angiopoietin 1 is involved in the organization of neuronal processes. J. Comp. Neurol.482, 244–256 (2005). ArticleCASPubMed Google Scholar
Danielyan, L. et al. The blockade of endothelin A receptor protects astrocytes against hypoxic injury: common effects of BQ-123 and erythropoietin on the rejuvenation of the astrocyte population. Eur. J. Cell Biol.84, 567–579 (2005). ArticleCASPubMed Google Scholar
Fagan, S. C., Hess, D. C., Hohnadel, E. J., Pollock, D. M. & Ergul, A. Targets for vascular protection after acute ischemic stroke. Stroke35, 2220–2225 (2004). ArticleCASPubMed Google Scholar
Ott, P. & Larsen, F. S. Blood–brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem. Int.44, 185–198 (2004). ArticleCASPubMed Google Scholar
Takahashi, H., Koehler, R. C., Brusilow, S. W. & Traystman, R. J. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am. J. Physiol.261, H825–H829 (1991). CASPubMed Google Scholar
Willard-Mack, C. L. et al. Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience71, 589–599 (1996). ArticleCASPubMed Google Scholar
Suarez, I., Bodega, G. & Fernandez, B. Glutamine synthetase in brain: effect of ammonia. Neurochem. Int.41, 123–142 (2002). ArticleCASPubMed Google Scholar
Butterworth, R. F. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab. Brain Dis.17, 221–227 (2002). ArticleCASPubMed Google Scholar
Sugimoto, H., Koehler, R. C., Wilson, D. A., Brusilow, S. W. & Traystman, R. J. Methionine sulfoximine, a glutamine synthetase inhibitor, attenuates increased extracellular potassium activity during acute hyperammonemia. J. Cereb. Blood Flow Metab.17, 44–49 (1997). ArticleCASPubMed Google Scholar
Rama Rao, K. V., Chen, M., Simard, J. M. & Norenberg, M. D. Increased aquaporin-4 expression in ammonia-treated cultured astrocytes. Neuroreport14, 2379–2382 (2003). ArticleCASPubMed Google Scholar
Bender, A. S. & Norenberg, M. D. Effects of ammonia on L-glutamate uptake in cultured astrocytes. Neurochem. Res.21, 567–573 (1996). ArticleCASPubMed Google Scholar
Norenberg, M. D., Huo, Z., Neary, J. T. & Roig-Cantesano, A. The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission. Glia21, 124–133 (1997). ArticleCASPubMed Google Scholar
Knecht, K., Michalak, A., Rose, C., Rothstein, J. D. & Butterworth, R. F. Decreased glutamate transporter (GLT-1) expression in frontal cortex of rats with acute liver failure. Neurosci. Lett.229, 201–203 (1997). ArticleCASPubMed Google Scholar
Watanabe, A. et al. Glutamic acid and glutamine levels in serum and cerebrospinal fluid in hepatic encephalopathy. Biochem. Med.32, 225–231 (1984). ArticleCASPubMed Google Scholar
Michalak, A., Rose, C., Butterworth, J. & Butterworth, R. F. Neuroactive amino acids and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure. Hepatology24, 908–913 (1996). ArticleCASPubMed Google Scholar
Monfort, P., Munoz, M. D., ElAyadi, A., Kosenko, E. & Felipo, V. Effects of hyperammonemia and liver failure on glutamatergic neurotransmission. Metab. Brain Dis.17, 237–250 (2002). ArticleCASPubMed Google Scholar
Rose, C., Kresse, W. & Kettenmann, H. Acute insult of ammonia leads to calcium-dependent glutamate release from cultured astrocytes, an effect of pH. J. Biol. Chem.280, 20937–20944 (2005). Shows that hyperammonaemia produces an increase in [Ca2+]iand triggers glial glutamate release in cultured astrocytes. This mechanism might contribute to disorders associated with glutamate-dependent overexcitation. ArticleCASPubMed Google Scholar
Szerb, J. C. & Butterworth, R. F. Effect of ammonium ions on synaptic transmission in the mammalian central nervous system. Prog. Neurobiol.39, 135–153 (1992). ArticleCASPubMed Google Scholar
Michalak, A. & Butterworth, R. F. Selective loss of binding sites for the glutamate receptor ligands [3H]kainate and (S)-[3H]5-fluorowillardiine in the brains of rats with acute liver failure. Hepatology25, 631–635 (1997). ArticleCASPubMed Google Scholar
Götz, M. Glial cells generate neurons — master control within CNS regions: developmental perspectives on neural stem cells. Neuroscientist9, 379–397 (2003). ArticleCASPubMed Google Scholar
Eichmann, A., Makinen, T. & Alitalo, K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev.19, 1013–1021 (2005). ArticleCASPubMed Google Scholar
Binder, D. K., Papadopoulos, M. C., Haggie, P. M. & Verkman, A. S. In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching. J. Neurosci.24, 8049–8056 (2004). ArticleCASPubMedPubMed Central Google Scholar
Uckermann, O. et al. Glutamate-evoked alterations of glial and neuronal cell morphology in the guinea pig retina. J. Neurosci.24, 10149–10158 (2004). ArticleCASPubMedPubMed Central Google Scholar
Izumi, Y. et al. Swelling of Müller cells induced by AP3 and glutamate transport substrates in rat retina. Glia17, 285–293 (1996). ArticleCASPubMed Google Scholar
MacVicar, B. A., Feighan, D., Brown, A. & Ransom, B. Intrinsic optical signals in the rat optic nerve: role for K+ uptake via NKCC1 and swelling of astrocytes. Glia37, 114–123 (2002). ArticlePubMed Google Scholar
Parkerson, K. A. & Sontheimer, H. Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes. Glia46, 419–436 (2004). ArticlePubMedPubMed Central Google Scholar
Nielsen, S. et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci.17, 171–180 (1997). ArticleCASPubMedPubMed Central Google Scholar
Nagelhus, E. A. et al. Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia26, 47–54 (1999). ArticleCASPubMed Google Scholar
Niermann, H., Amiry-Moghaddam, M., Holthoff, K., Witte, O. W. & Ottersen, O. P. A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J. Neurosci.21, 3045–3051 (2001). ArticleCASPubMedPubMed Central Google Scholar
Amiry-Moghaddam, M. et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of α-syntrophin-null mice. Proc. Natl Acad. Sci. USA100, 13615–13620 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nagelhus, E. A., Mathiisen, T. M. & Ottersen, O. P. Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience129, 905–913 (2004). ArticleCASPubMed Google Scholar
Papadopoulos, M. C. & Verkman, A. S. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J. Biol. Chem.280, 13906–13912 (2005). ArticleCASPubMed Google Scholar
Bloch, O., Papadopoulos, M. C., Manley, G. T. & Verkman, A. S. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J. Neurochem.95, 254–262 (2005). ArticleCASPubMed Google Scholar
Simard, M., Arcuino, G., Takano, T., Liu, Q. S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci.23, 9254–9262 (2003). ArticleCASPubMedPubMed Central Google Scholar