Astrocytes, from brain glue to communication elements: the revolution continues (original) (raw)
Colomar, A. & Robitaille, R. Glial modulation of synaptic transmission at the neuromuscular junction. Glia47, 284–289 (2004). ArticlePubMed Google Scholar
Haydon, P. G. Glia: listening and talking to the synapse. Nature Rev. Neurosci.2, 185–193 (2001). ArticleCAS Google Scholar
Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci.22, 183–192 (2002). By injecting fluorescent dyes into contiguous hippocampal astrocytes, the authors visualized the entire structure of astrocytes and established that, contrary to common opinion, they occupy exclusive, non-overlapping territories that are evenly distributed throughout the neuropil. ArticleCASPubMedPubMed Central Google Scholar
Bushong, E. A., Martone, M. E. & Ellisman, M. H. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int. J. Dev. Neurosci.22, 73–86 (2004). ArticlePubMed Google Scholar
Derouiche, A. & Frotscher, M. Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia36, 330–341 (2001). ArticleCASPubMed Google Scholar
Hirrlinger, J., Hulsmann, S. & Kirchhoff, F. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur. J. Neurosci.20, 2235–2239 (2004). ArticlePubMed Google Scholar
Benediktsson, A. M., Schachtele, S. J., Green, S. H. & Dailey, M. E. Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J. Neurosci. Methods141, 41–53 (2005). ArticlePubMed Google Scholar
Simard, M., Arcuino, G., Takano, T., Liu, Q. S. & Nedergaard, M. Signaling at the gliovascular interface. J. Neurosci.23, 9254–9262 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mulligan, S. J. & MacVicar, B. A. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature431, 195–199 (2004). This paper provides the first direct demonstration that elevated [Ca2+]iin astrocytes, which propagates as a local wave from end-foot to end-foot, can induce vasoconstriction of the surrounding arteriolar region through eicosanoid gliotransmission and the production of 20-HETE. ArticleCASPubMed Google Scholar
Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature427, 740–744 (2004). ArticleCASPubMed Google Scholar
Garcia, A. D., Doan, N. B., Imura, T., Bush, T. G. & Sofroniew, M. V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nature Neurosci.7, 1233–1241 (2004). ArticleCASPubMed Google Scholar
Bachoo, R. et al. Molecular diversity of astrocytes with implications for neurological disorders. Proc. Natl Acad. Sci. USA101, 8384–8389 (2004). ArticleCASPubMedPubMed Central Google Scholar
Steinhauser, C., Berger, T., Frotscher, M. & Kettenmann, H. Heterogeneity in the membrane current pattern of identified glial cells in the hippocampal slice. Eur. J. Neurosci.4, 472–484 (1992). ArticlePubMed Google Scholar
Zhou, M. & Kimelberg, H. K. Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression. J. Neurosci.21, 7901–7908 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nolte, C. et al. GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia33, 72–86 (2001). ArticleCASPubMed Google Scholar
Matthias, K. et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci.23, 1750–1758 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wallraff, A., Odermatt, B., Willecke, K. & Steinhäuser, C. Distinct types of astroglial cells in the hippocampus differ in gap-junction coupling. Glia48, 36–43 (2004). ArticlePubMed Google Scholar
Butt, A. M., Kiff, J., Hubbard, P. & Berry, M. Synantocytes: new functions for novel NG2 expressing glia. J. Neurocytol.31, 551–565 (2002). ArticleCASPubMed Google Scholar
Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature405, 187–191 (2000). ArticleCASPubMed Google Scholar
Lin, S. C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neurosci.7, 24–32 (2004). ArticleCASPubMed Google Scholar
Golgi, C. Contribuzione alla fine anatomia degli organi centrali del sistema nervoso. Rivista Clinica di Bologna, Bologna (1871) (in French).
Seri, B., Garcia-Verdugo, J. M., McEwen, B. S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci.21, 7153–7160 (2001). ArticleCASPubMedPubMed Central Google Scholar
Mauch, D. H. et al. CNS synaptogenesis promoted by glia-derived cholesterol. Science294, 1354–1357 (2001). ArticleCASPubMed Google Scholar
Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science291, 657–661 (2001). ArticleCASPubMed Google Scholar
Song, H., Stevens, C. F. & Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature417, 39–44 (2002). ArticleCASPubMed Google Scholar
Hama, H., Hara, C., Yamaguchi, K. & Miyawaki, A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron41, 405–415 (2004). ArticleCASPubMed Google Scholar
Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell120, 421–433 (2005). ArticleCASPubMed Google Scholar
Oliet, S. H., Piet, R. & Poulain, D. A. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science292, 923–926 (2001). Shows that synaptic transmission is controlled by the astrocytic coverage of synapses. Morphological adaptations in the astrocytes are associated with changes in the perisynaptic space and in the localization of glutamate transporters, which results in modified action of synaptically released glutamate. ArticleCASPubMed Google Scholar
Piet, R., Vargova, L., Sykova, E., Poulain, D. A. & Oliet, S. H. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc. Natl Acad. Sci. USA101, 2151–2155 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lehre, K. P. & Rusakov, D. A. Asymmetry of glia near central synapses favors presynaptically directed glutamate escape. Biophys. J.83, 125–134 (2002). ArticleCASPubMedPubMed Central Google Scholar
Iino, M. et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science292, 926–929 (2001). By forced expression of the GluR2 subunit, the authors abolished AMPAR-dependent Ca2+signalling in Bergmann glial cells, revealing its essential role in the establishment of correct structural-functional relationships at Purkinje cell synapses. ArticleCASPubMed Google Scholar
Murai, K. K., Nguyen, L. N., Irie, F., Yamaguchi, Y. & Pasquale, E. B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature Neurosci.6, 153–160 (2003). ArticleCASPubMed Google Scholar
Tsai, H. H. et al. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell110, 373–383 (2002). ArticleCASPubMed Google Scholar
Babcock, A. A., Kuziel, W. A., Rivest, S. & Owens, T. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J. Neurosci.23, 7922–7930 (2003). ArticleCASPubMedPubMed Central Google Scholar
Marella, M. & Chabry, J. Neurons and astrocytes respond to prion infection by inducing microglia recruitment. J. Neurosci.24, 620–627 (2004). ArticleCASPubMedPubMed Central Google Scholar
Imitola, J. et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1α/CXC chemokine receptor 4 pathway. Proc. Natl Acad. Sci. USA101, 18117–18122 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bezzi, P. & Volterra, A. A neuron–glia signalling network in the active brain. Curr. Opin. Neurobiol.11, 387–394 (2001). ArticleCASPubMed Google Scholar
Matyash, V., Filippov, V., Mohrhagen, K. & Kettenmann, H. Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol. Cell Neurosci.18, 664–670 (2001). ArticleCASPubMed Google Scholar
Khan, Z. U., Koulen, P., Rubinstein, M., Grandy, D. K. & Goldman-Rakic, P. S. An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc. Natl Acad. Sci. USA98, 1964–1969 (2001). ArticleCASPubMedPubMed Central Google Scholar
Araque, A., Martin, E. D., Perea, G., Arellano, J. I. & Buno, W. Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J. Neurosci.22, 2443–2450 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rose, C. R. et al. Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature426, 74–78 (2003). ArticleCASPubMed Google Scholar
Zhang, J. M. et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron40, 971–982 (2003). This paper reveals the intermediary role of astrocytes in activity-dependent modulation of excitatory synapses in the CA1 region of the hippocampus. Stimulated by the activity of Schaffer collaterals, astrocytes release ATP, which is rapidly converted to adenosine and induces homosynaptic and heterosynaptic suppression of excitatory transmission. ArticleCASPubMed Google Scholar
Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci.6, 43–50 (2003). On the basis of an ensemble of coherent evidence, this work proposes, for the first time, that astrocytes function as an intermediary of neurovascular coupling and have a key role in functional hyperaemia, the adaptation of local blood flow to neuronal activity, through the release of vasodilating prostaglandins. ArticleCASPubMed Google Scholar
Fellin, T. et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron43, 729–743 (2004). Together with reference 117, this work provides the first evidence that astrocytes induce neuronal synchrony. Glutamate, which is released from astrocytes as a result of spontaneous excitation or neuronal-dependent excitation, is sensed simultaneously by two or more neighbouring CA1 pyramidal cells with the production of synchronous NMDAR-dependent SICs. ArticleCASPubMed Google Scholar
Bowser, D. N. & Khakh, B. S. ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J. Neurosci.24, 8606–8620 (2004). ArticleCASPubMedPubMed Central Google Scholar
Matsui, K. & Jahr, C. E. Ectopic release of synaptic vesicles. Neuron40, 1173–1183 (2003). This paper reports the identification of synaptic-like communication between climbing fibres and Bergmann glial cells, thereby revealing that transmitter is released from climbing fibre nerve terminals in a bimodal fashion, from conventional presynaptic sites and from ectopic sites that face the Bergmann glia. ArticleCASPubMed Google Scholar
Matsui, K. & Jahr, C. E. Differential control of synaptic and ectopic vesicular release of glutamate. J. Neurosci.24, 8932–8939 (2004). ArticleCASPubMedPubMed Central Google Scholar
Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci.22, 208–215 (1999). ArticleCASPubMed Google Scholar
Volterra, A., Magistretti, P. & Haydon, P. (eds) The Tripartite Synapse: Glia in Synaptic Transmission (Oxford Univ. Press, Oxford, UK, 2002). Google Scholar
Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci.17, 7817–7830 (1997). ArticleCASPubMedPubMed Central Google Scholar
Grosche, J. et al. Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nature Neurosci.2, 139–143 (1999). ArticleCASPubMed Google Scholar
Perea, G. & Araque, A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J. Neurosci.25, 2192–2203 (2005). By monitoring astrocytic Ca2+responses to the stimulation of neuronal afferents in the hippocampus, the authors found that single astrocytes can discriminate inputs that are generated by distinct sets of nerve fibres, and integrate them when they occur coincidentally. ArticleCASPubMedPubMed Central Google Scholar
Parri, H. R., Gould, T. M. & Crunelli, V. Spontaneous astrocytic Ca2+oscillations in situ drive NMDAR-mediated neuronal excitation. Nature Neurosci.4, 803–812 (2001). Revealed, for the first time, that astrocytes generate spontaneous Ca2+activity that is independent of neuronal inputs. This activity was shown to trigger neuronal excitation through the release of glutamate from the astrocytes and the induction of NMDAR-dependent SIC responses in neighbouring neurons. ArticleCASPubMed Google Scholar
Nett, W. J., Oloff, S. H. & McCarthy, K. D. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J. Neurophysiol.87, 528–537 (2002). ArticlePubMed Google Scholar
Aguado, F., Espinosa-Parrilla, J. F., Carmona, M. A. & Soriano, E. Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J. Neurosci.22, 9430–9444 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hirase, H., Qian, L., Bartho, P. & Buzsaki, G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol.2, E96 (2004). Together with reference 59, this paper provides the first report of a two-photon imaging study of spontaneous astrocytic Ca2+activity in the brains of living animals. Article Google Scholar
Nimmerjahn, A., Kirchhoff, F., Kerr, J. N. D. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nature Methods1, 31–37 (2004). Illustrates a new strategy for selectively labelling astrocytes in living brains and uses it for a two-photon microscopy investigation of the [Ca2+]idynamics in astrocytic and neuronal networks. ArticleCASPubMed Google Scholar
Sul, J. -Y., Orosz, G., Givens, R. S. & Haydon P. G. Astrocytic connectivity in the hippocampus. Neuron Glia Biol.1, 3–11 (2004). ArticlePubMedPubMed Central Google Scholar
Schipke, C. G., Boucsein, C., Ohlemeyer, C., Kirchhoff, F. & Kettenmann, H. Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J.16, 255–257 (2002). ArticleCASPubMed Google Scholar
Peters, O., Schipke, C. G., Hashimoto, Y. & Kettenmann, H. Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J. Neurosci.23, 9888–9896 (2003). ArticleCASPubMedPubMed Central Google Scholar
Innocenti, B., Parpura, V. & Haydon, P. G. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J. Neurosci.20, 1800–1808 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bernardinelli, Y., Magistretti, P. J. & Chatton, J. Y. Astrocytes generate Na+-mediated metabolic waves. Proc. Natl Acad. Sci. USA101, 14937–14942 (2004). Shows, for the first time, that intercellular Ca2+waves in cultured astrocytes are accompanied by parallel 'metabolic waves'. Such waves consist of [Na+]ichanges that are due to glutamate uptake and coupled to glucose uptake. They could underlie spatially coordinated delivery of energy substrates to neurons in response to localized synaptic activity. ArticleCASPubMedPubMed Central Google Scholar
Morita, M. et al. Dual regulation of calcium oscillation in astrocytes by growth factors and pro-inflammatory cytokines via the mitogen-activated protein kinase cascade. J. Neurosci.23, 10944–10952 (2003). ArticleCASPubMedPubMed Central Google Scholar
John, G. R. et al. IL-1β differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc. Natl Acad. Sci. USA96, 11613–11618 (1999). ArticleCASPubMedPubMed Central Google Scholar
Evanko, D. S., Zhang, Q., Zorec, R. & Haydon, P. G. Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia47, 233–240 (2004). ArticlePubMed Google Scholar
Volterra, A. & Meldolesi, J. in Neuroglia 2nd edn (eds Kettenmann, H. & Ransom, B. R.) 190–201 (Oxford Univ. Press, Oxford, UK, 2005). Google Scholar
Nedergaard, M., Takano, T. & Hansen, A. J. Beyond the role of glutamate as a neurotransmitter. Nature Rev. Neurosci.3, 748–755 (2002). ArticleCAS Google Scholar
Bezzi, P. et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nature Neurosci.7, 613–620 (2004). By combining post-embedding immunogold electron microscopy and TIRFM, this study provides the first demonstration in astrocytes of a vesicular compartment that can regulate glutamate exocytosis, and a description of its morphological and functional characteristics. ArticleCASPubMed Google Scholar
Zhang, Q. et al. Fusion-related release of glutamate from astrocytes. J. Biol. Chem.279, 12724–12733 (2004). Using several methodological approaches, including membrane capacitance measurements in cultured astrocytes, this study and reference 73 provide evidence that complements that of reference 71 for glutamate exocytosis in astrocytes. ArticleCASPubMed Google Scholar
Kreft, M. et al. Properties of Ca2+-dependent exocytosis in cultured astrocytes. Glia46, 437–445 (2004). ArticlePubMed Google Scholar
Fremeau, R. T. Jr, Voglmaier, S., Seal, R. P. & Edwards, R. H. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci.27, 98–103 (2004). ArticleCASPubMed Google Scholar
Montana, V., Ni, Y., Sunjara, V., Hua, X. & Parpura, V. Vesicular glutamate transporter-dependent glutamate release from astrocytes. J. Neurosci.24, 2633–2642 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tse, F. W. & Tse, A. Regulation of exocytosis via release of Ca2+ from intracellular stores. Bioessays21, 861–865 (1999). ArticleCASPubMed Google Scholar
Holtzclaw, L. A., Pandhit, S., Bare, D. J., Mignery, G. A. & Russell, J. T. Astrocytes in adult rat brain express type 2 inositol 1,4,5-trisphosphate receptors. Glia39, 69–84 (2002). ArticlePubMed Google Scholar
Zhang, Q., Fukuda, M., Van Bockstaele, E., Pascual, O. & Haydon, P. G. Synaptotagmin IV regulates glial glutamate release. Proc. Natl Acad. Sci. USA101, 9441–9446 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wilhelm, A. et al. Localization of SNARE proteins and secretory organelle proteins in astrocytes in vitro and in situ. Neurosci. Res.48, 249–257 (2004). ArticleCASPubMed Google Scholar
Chilcote, T. J. et al. Cellubrevin and synaptobrevins: similar subcellular localization and biochemical properties in PC12 cells. J. Cell Biol.129, 219–231 (1995). ArticleCASPubMed Google Scholar
Chieregatti, E. & Meldolesi, J. Regulated exocytosis: new organelles for non-secretory purposes. Nature Rev. Mol. Cell Biol.6, 181–187 (2005). ArticleCAS Google Scholar
Chieregatti, E., Chicka, M. C., Chapman, E. R. & Baldini, G. SNAP-23 functions in docking/fusion of granules at low Ca2+. Mol. Biol. Cell15, 1918–1930 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dai, H. et al. Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4. Nature Struct. Mol. Biol.11, 844–849 (2004). ArticleCAS Google Scholar
Wang, C. T. et al. Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature424, 943–947 (2003). ArticleCASPubMed Google Scholar
Maienschein, V., Marxen, M., Volknandt, W. & Zimmermann, H. A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia26, 233–244 (1999). ArticleCASPubMed Google Scholar
Calegari, F. et al. A regulated secretory pathway in cultured hippocampal astrocytes. J. Biol. Chem.274, 22539–22547 (1999). ArticleCASPubMed Google Scholar
Coco, S. et al. Storage and release of ATP from astrocytes in culture. J. Biol. Chem.278, 1354–1362 (2003). ArticleCASPubMed Google Scholar
Mothet, J. -P. et al. Glutamate receptor activation triggers a calcium- and SNARE protein-dependent release of the gliotransmitter D-serine. Proc. Natl Acad. Sci. USA102, 5606–5611 (2005). ArticleCASPubMedPubMed Central Google Scholar
Anlauf, E. & Derouiche, A. Astrocytic exocytosis vesicles and glutamate: a high-resolution immunofluorescence study. Glia49, 96–106 (2005). ArticlePubMed Google Scholar
Muyderman, H. et al. α1-Adrenergic modulation of metabotropic glutamate receptor-induced calcium oscillations and glutamate release in astrocytes. J. Biol. Chem.276, 46504–46514 (2001). ArticleCASPubMed Google Scholar
Joseph, S. M., Buchakjian, M. R. & Dubyak, G. R. Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes. J. Biol. Chem.278, 23331–23342 (2003). ArticleCASPubMed Google Scholar
Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature391, 281–285 (1998). ArticleCASPubMed Google Scholar
Bezzi, P. et al. CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nature Neurosci.4, 702–710 (2001). Reports that reactive microglia render the astrocytic Ca2+-dependent glutamate release process neurotoxic. This work also provides evidence that altered astrocyte signalling could be relevant to the pathogenesis of AIDS-related neuropathology. ArticleCASPubMed Google Scholar
Pasti, L., Zonta, M., Pozzan, T., Vicini, S. & Carmignoto, G. Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J. Neurosci.21, 477–484 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sanzgiri, R. P., Araque, A. & Haydon, P. G. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. J. Neurobiol.41, 221–229 (1999). ArticleCASPubMed Google Scholar
Zonta, M. et al. Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J. Physiol. (Lond.)553, 407–414 (2003). ArticleCAS Google Scholar
Dziedzic, B. et al. Neuron-to-glia signaling mediated by excitatory amino acid receptors regulates ErbB receptor function in astroglial cells of the neuroendocrine brain. J. Neurosci.23, 915–926 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kimelberg, H. K., Goderie, S. K., Higman, S., Pang, S. & Waniewski, R. A. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci.10, 1583–1591 (1990). ArticleCASPubMedPubMed Central Google Scholar
Mongin, A. A. & Kimelberg, H. K. ATP regulates anion channel-mediated organic osmolyte release from cultured rat astrocytes via multiple Ca2+-sensitive mechanisms. Am. J. Physiol. Cell Physiol.288, C204–C213 (2005). ArticleCAS Google Scholar
Bennett, M. V., Contreras, J. E., Bukauskas, F. F. & Saez, J. C. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci.26, 610–617 (2003). ArticleCASPubMedPubMed Central Google Scholar
Stout, C. E., Costantin, J. L., Naus, C. C. & Charles, A. C. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem.277, 10482–10488 (2002). ArticleCASPubMed Google Scholar
Arcuino, G. et al. Intercellular calcium signaling mediated by point-source burst release of ATP. Proc. Natl Acad. Sci. USA99, 9840–9845 (2002). ArticleCASPubMedPubMed Central Google Scholar
Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S. & Ransom, B. R. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci.23, 3588–3596 (2003). ArticleCASPubMedPubMed Central Google Scholar
Newman, E. A. Glial cell inhibition of neurons by release of ATP. J. Neurosci.23, 1659–1666 (2003). In this study, an intact retinal preparation provides the first evidence that gliotransmitters other than glutamate — namely ATP rapidly converted to adenosine – induce neuronal modulation. ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nature Med.10, 821–827 (2004). ArticleCASPubMed Google Scholar
Darby, M., Kuzmiski, J. B., Panenka, W., Feighan, D. & MacVicar, B. A. ATP released from astrocytes during swelling activates chloride channels. J. Neurophysiol.89, 1870–1877 (2003). ArticleCASPubMed Google Scholar
Rossi, D. J., Oshima, T. & Attwell, D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature403, 316–321 (2000). ArticleCASPubMed Google Scholar
Baker, D. A., Xi, Z. X., Shen, H., Swanson, C. J. & Kalivas, P. W. The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci.22, 9134–9141 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cavelier, P. & Attwell, D. Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J. Physiol. (Lond.)564, 397–410 (2005). ArticleCAS Google Scholar
Fiacco, T. A. & McCarthy, K. D. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons. J. Neurosci.24, 722–732 (2004). ArticleCASPubMedPubMed Central Google Scholar
Stevens, E. R. et al. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc. Natl Acad. Sci. USA100, 6789–6794 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci.1, 683–692 (1998). ArticleCASPubMed Google Scholar
Liu, Q. S., Xu, Q., Arcuino, G., Kang, J. & Nedergaard, M. Astrocyte-mediated activation of neuronal kainate receptors. Proc. Natl Acad. Sci. USA101, 3172–3177 (2004). ArticleCASPubMedPubMed Central Google Scholar
Angulo, M. C., Kozlov, A. S., Charpak, S. & Audinat, E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J. Neurosci.24, 6920–6927 (2004). ArticleCASPubMedPubMed Central Google Scholar
Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev. Neurosci.2, 704–716 (2001). ArticleCAS Google Scholar
Yang, Y. et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc. Natl Acad. Sci. USA100, 15194–15199 (2003). ArticleCASPubMedPubMed Central Google Scholar
Beattie, E. C. et al. Control of synaptic strength by glial TNFα. Science295, 2282–2285 (2002). ArticleCASPubMed Google Scholar
Filosa, J. A., Bonev, A. D. & Nelson, M. T. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ. Res.95, e73–e81 (2004).
Smith, I. F., Boyle, J. P., Plant, L. D., Pearson, H. A. & Peers, C. Hypoxic remodeling of Ca2+ stores in type I cortical astrocytes. J. Biol. Chem.278, 4875–4881 (2003). ArticleCASPubMed Google Scholar
Seifert, G., Huttmann, K., Schramm, J. & Steinhauser, C. Enhanced relative expression of glutamate receptor 1 flip AMPA receptor subunits in hippocampal astrocytes of epilepsy patients with Ammon's horn sclerosis. J. Neurosci.24, 1996–2003 (2004). ArticleCASPubMedPubMed Central Google Scholar
Krebs, C., Fernandes, H. B., Sheldon, C., Raymond, L. A. & Baimbridge, K. G. Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J. Neurosci.23, 3364–3372 (2003). ArticleCASPubMedPubMed Central Google Scholar
Contreras, J. E. et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc. Natl Acad. Sci. USA99, 495–500 (2002). ArticleCASPubMed Google Scholar
Katsuki, H., Nonaka, M., Shirakawa, H., Kume, T. & Akaike, A. Endogenous D-serine is involved in induction of neuronal death by _N_-methyl-D-aspartate and simulated ischemia in rat cerebrocortical slices. J. Pharmacol. Exp. Ther.311, 836–844 (2004). ArticleCASPubMed Google Scholar
Sontheimer, H. Malignant gliomas: perverting glutamate and ion homeostasis for selective advantage. Trends Neurosci.26, 543–549 (2003). ArticleCASPubMed Google Scholar
Takano, T. et al. Glutamate release promotes growth of malignant gliomas. Nature Med.7, 1010–1015 (2001). Shows that excitotoxic glutamate release from glioma cells favours tumour growthin vivoby killing neighbouring cells. The authors propose pharmacological blockade of NMDAR as a new therapeutic approach for slowing glioma expansion. ArticleCASPubMed Google Scholar
Ishiuchi, S. et al. Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nature Med.8, 971–978 (2002). ArticleCASPubMed Google Scholar
Kaul, M., Garden, G. A. & Lipton, S. A. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature410, 988–994 (2001). ArticleCASPubMed Google Scholar
Limatola, C. et al. SDF-1α-mediated modulation of synaptic transmission in rat cerebellum. Eur. J. Neurosci.12, 2497–2504 (2000). ArticleCASPubMed Google Scholar
Zhang, K. et al. HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nature Neurosci.6, 1064–1071 (2003). ArticleCASPubMed Google Scholar
Wyss-Coray, T. et al. Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nature Med.9, 453–457 (2003). Reports that astrocytes have a crucial role in the degradation of Aβ and proposes that astrocyte defects that lead to reduced Aβ clearance are implicated in the pathogenesis of Alzheimer's disease. ArticleCASPubMed Google Scholar
Hartlage-Rubsamen, M. et al. Astrocytic expression of the Alzheimer's disease β-secretase (BACE1) is stimulus-dependent. Glia41, 169–179 (2003). ArticlePubMed Google Scholar
Koistinaho, M. et al. Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nature Med.10, 719–726 (2004). ArticleCASPubMed Google Scholar
Bruijn, L. I., Miller, T. M. & Cleveland, D. W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci.27, 723–749 (2004). ArticleCASPubMed Google Scholar
Clement, A. M. et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science302, 113–117 (2003). By using chimaeric mice that express mixtures of normal and mutated SOD1-expressing cells, this study shows that the death of motor neurons in ALS is not a cell-autonomous process, but rather requires mutated SOD1 to be expressed in the neighbouring glial cells as well. ArticleCASPubMed Google Scholar
Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K. & Rouleau, G. A. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J. Neurosci.21, 3369–3374 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lino, M. M., Schneider, C. & Caroni, P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci.22, 4825–4832 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gong, Y. H., Parsadanian, A. S., Andreeva, A., Snider, W. D. & Elliott, J. L. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J. Neurosci.20, 660–665 (2000). ArticleCASPubMedPubMed Central Google Scholar
Howland, D. S. et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA99, 1604–1609 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rothstein, J. D et al. β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature433, 73–77 (2005). ArticleCASPubMed Google Scholar
Ikeda, H. & Murase, K. Glial nitric oxide-mediated long-term presynaptic facilitation revealed by optical imaging in rat spinal dorsal horn. J. Neurosci.24, 9888–9896 (2004). ArticleCASPubMedPubMed Central Google Scholar
Raoul, C. et al. Motoneuron death triggered by a specific pathway downstream of Fas: potentiation by ALS-linked SOD1 mutations. Neuron35, 1067–1083 (2002). ArticleCASPubMed Google Scholar
Jabaudon, D. et al. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc. Natl Acad. Sci. USA96, 8733–8738 (1999). ArticleCASPubMedPubMed Central Google Scholar
Steyer, J. A. & Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nature Rev. Mol. Cell Biol.2, 268–275 (2001). ArticleCAS Google Scholar
Parpura, V. et al. Glutamate-mediated astrocyte-neuron signalling. Nature369, 744–747 (1994). ArticleCASPubMed Google Scholar
Hussy, N. et al. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J. Neurosci.21, 7110–7116 (2001). ArticleCASPubMedPubMed Central Google Scholar
Do, K. Q. et al. Release of homocysteic acid from rat thalamus following stimulation of somatosensory afferents in vivo: feasibility of glial participation in synaptic transmission. Neuroscience124, 387–393 (2004). ArticleCASPubMed Google Scholar
Smit, A. B. et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature411, 261–268 (2001). ArticleCASPubMed Google Scholar