Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration (original) (raw)
Nicholls, D. G. & Budd, S. L. Mitochondria and neuronal survival. Physiol. Rev.80, 315–360 (2000). ArticleCASPubMed Google Scholar
Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron47, 365–378 (2005). This paper shows that inD. melanogasterwith mutant DRP1, the loss of mitochondria from neuromuscular junctions results in faster depletion of synaptic vesicles during prolonged pulse train stimulation owing to a specific defect in mobilizing reserve pool vesicles. ArticleCASPubMed Google Scholar
Lee, C. W. & Peng, H. B. The function of mitochondria in presynaptic development at the neuromuscular junction. Mol. Biol. Cell19, 150–158 (2008). ArticleCASPubMedPubMed Central Google Scholar
Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab.21, 1133–1145 (2001). ArticleCASPubMed Google Scholar
Werth, J. L. & Thayer, S. A. Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J. Neurosci.14, 348–356 (1994). ArticleCASPubMedPubMed Central Google Scholar
Tang, Y. & Zucker, R. S. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron18, 483–491 (1997). ArticleCASPubMed Google Scholar
Billups, B. & Forsythe, I. D. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J. Neurosci.22, 5840–5847 (2002). ArticleCASPubMedPubMed Central Google Scholar
Medler, K. & Gleason, E. L. Mitochondrial Ca2+ buffering regulates synaptic transmission between retinal amacrine cells. J. Neurophysiol.87, 1426–1439 (2002). ArticleCASPubMed Google Scholar
David, G. & Barrett, E. F. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J. Physiol.548, 425–438 (2003). ArticleCASPubMedPubMed Central Google Scholar
Talbot, J. D., David, G. & Barrett, E. F. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+]. J. Neurophysiol.90, 491–502 (2003). ArticleCASPubMed Google Scholar
Levy, M., Faas, G. C., Saggau, P., Craigen, W. J. & Sweatt, J. D. Mitochondrial regulation of synaptic plasticity in the hippocampus. J. Biol. Chem.278, 17727–17734 (2003). ArticleCASPubMed Google Scholar
Kang, J. S. et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell132, 137–148 (2008). By using genetic mouse models and time-lapse imaging this study identifies syntaphilin as a 'static anchor' for axonal mitochondria. ArticleCASPubMedPubMed Central Google Scholar
Hollenbeck, P. J. & Saxton, W. M. The axonal transport of mitochondria. J. Cell Sci.118, 5411–5419 (2005). ArticleCASPubMed Google Scholar
Bogan, N. & Cabot, J. B. Light and electron microscopic analyses of intraspinal axon collaterals of sympathetic preganglionic neurons. Brain Res.541, 241–251 (1991). ArticleCASPubMed Google Scholar
Fabricius, C., Berthold, C. H. & Rydmark, M. Axoplasmic organelles at nodes of Ranvier. II. Occurrence and distribution in large myelinated spinal cord axons of the adult cat. J. Neurocytol.22, 941–954 (1993). ArticleCASPubMed Google Scholar
Morris, R. L. & Hollenbeck, P. J. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J. Cell Sci.104, 917–927 (1993). PubMed Google Scholar
Mutsaers, S. E. & Carroll, W. M. Focal accumulation of intra-axonal mitochondria in demyelination of the cat optic nerve. Acta Neuropathol.96, 139–143 (1998). ArticleCASPubMed Google Scholar
Ruthel, G. & Hollenbeck, P. J. Response of mitochondrial traffic to axon determination and differential branch growth. J. Neurosci.23, 8618–8624 (2003). ArticleCASPubMedPubMed Central Google Scholar
Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell119, 873–887 (2004). ArticleCASPubMed Google Scholar
Zhang, C. L., Ho, P. L., Kintner, D. B., Sun, D. & Chiu, S. Y. Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves. J. Neurosci.30, 3555–3566 (2010). This study demonstrates a highly localized elevation of axonal Ca2+levels and reduced mitochondrial mobility at individual nodes of Ranvier during a brief train of action potentials. ArticleCASPubMedPubMed Central Google Scholar
Amiri, M. & Hollenbeck, P. J. Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev. Neurobiol.68, 1348–1361 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rintoul, G. L., Filiano, A. J., Brocard, J. B., Kress, G. J. & Reynolds, I. J. Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J. Neurosci.23, 7881–7888 (2003). This study shows that mobile mitochondria are recruited to stationary pools in response to acute application of glutamate to cultured neurons. Mitochondria are also changed from an elongated to a rounded morphology. ArticleCASPubMedPubMed Central Google Scholar
Macaskill, A. F. et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron61, 541–555 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. & Schwarz, T. L. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell136, 163–174 (2009). ArticleCASPubMedPubMed Central Google Scholar
Saotome, M. et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl Acad. Sci. USA105, 20728–20733 (2008). References 23, 24 and 25 independently identified MIRO as a Ca2+sensor, providing a mechanism for the underlying Ca2+-dependent regulation of mitochondrial mobility. ArticleCASPubMedPubMed Central Google Scholar
Yi, M., Weaver, D. & Hajnóczky, G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J. Cell Biol.167, 661–672 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chang, D. T. & Reynolds, I. J. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog. Neurobiol.80, 241–268 (2006). ArticleCASPubMed Google Scholar
Chan, D. C. Mitochondria: dynamic organelles in disease, aging, and development. Cell125, 1241–1252 (2006). ArticleCASPubMed Google Scholar
Stokin, G. B. & Goldstein, L. S. Axonal transport and Alzheimer's disease. Annu. Rev. Biochem.75, 607–627 (2006). ArticleCASPubMed Google Scholar
Miller, K. E. & Sheetz, M. P. Direct evidence for coherent low velocity axonal transport of mitochondria. J. Cell Biol.173, 373–381 (2006). ArticleCASPubMedPubMed Central Google Scholar
Misgeld, T., Kerschensteiner, M., Bareyre, F. M., Burgess, R. W. & Lichtman, J. W. Imaging axonal transport of mitochondria in vivo. Nature Methods4, 559–561 (2007). This study develops an elegant tool to visualize axonal mitochondrial transport in living mice and explanted nervous tissue. ArticleCASPubMed Google Scholar
Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron68, 610–638 (2010). ArticleCASPubMed Google Scholar
Martin, M. et al. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol. Biol. Cell10, 3717–3728 (1999). ArticleCASPubMedPubMed Central Google Scholar
Tanaka, Y. et al. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell93, 1147–1158 (1998). This is the first genetic mouse study showing that KIF5 motors are essential for mitochondrial transport. ArticleCASPubMed Google Scholar
Górska-Andrzejak, J. et al. Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J. Comp. Neurol.463, 372–388 (2003). ArticleCASPubMed Google Scholar
Pilling, A. D., Horiuchi, D., Lively, C. M. & Saxton, W. M. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell17, 2057–2068 (2006). This study provides the genetic evidence in theD. melanogasternervous system that dynein motors have a crucial role in mitochondrial retrograde transport in axons. ArticleCASPubMedPubMed Central Google Scholar
MacAskill, A. F. & Kittler, J. T. Control of mitochondrial transport and localization in neurons. Trends Cell Biol.20, 102–112 (2010). ArticleCASPubMed Google Scholar
Hirokawa, N. et al. Kinesin associates with anterogradely transported membranous organelles in vivo. J. Cell Biol.114, 295–302 (1991). This study shows that KIF5 motors are attached to brain mitochondria. ArticleCASPubMed Google Scholar
Cai, Q., Gerwin, C. & Sheng, Z.-H. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J. Cell Biol.170, 959–969 (2005). This study identifies syntabulin as a second prominent KIF5 motor adaptor for mitochondria. Syntabulin loss-of-function or interference of the syntaphilin–KIF5 interaction reduces anterograde, but not retrograde, mitochondrial transport along axons. ArticleCASPubMedPubMed Central Google Scholar
Nangaku, M. et al. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell79, 1209–1220 (1994). ArticleCASPubMed Google Scholar
Tanaka, K., Sugiura, Y., Ichishita, R., Mihara, K. & Oka, T. KLP6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. J. Cell Sci.124, 2457–2465 (2011). ArticleCASPubMed Google Scholar
Stowers, R. S., Megeath, L. J., Górska-Andrzejak, J., Meinertzhagen, I. A. & Schwarz, T. L. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron36, 1063–1077 (2002). This paper reports thatD. melanogasterphotoreceptors that express mutant Milton show aberrant synaptic transmission owing to a reduced distribution of mitochondria at synapses. ArticleCASPubMed Google Scholar
Fransson, A., Ruusala, A. & Aspenström, P. Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J. Biol. Chem.278, 6495–6502 (2003). ArticleCASPubMed Google Scholar
Fransson, S., Ruusala, A. & Aspenström, P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem. Biophys. Res. Commun.344, 500–510 (2006). ArticleCASPubMed Google Scholar
Frederick, R. L., McCaffery, J. M., Cunningham, K. W., Okamoto, K. & Shaw, J. M. Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J. Cell Biol.167, 87–98 (2004). ArticleCASPubMedPubMed Central Google Scholar
Glater, E. E., Megeath, L. J., Stowers, R. S. & Schwarz, T. L. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol.173, 545–557 (2006). ArticleCASPubMedPubMed Central Google Scholar
Guo, X. et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron47, 379–393 (2005). In this paper, the authors show that a MIRO mutant results in the chronic loss of mitochondria from neuromuscular junctions, a reduction in Ca2+buffering capacity and impaired neurotransmitter release during prolonged stimulation. ArticleCASPubMed Google Scholar
Brickley, K., Smith, M. J., Beck, M. & Stephenson, F. A. GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J. Biol. Chem.280, 14723–14732 (2005). ArticleCASPubMed Google Scholar
Smith, M. J., Pozo, K., Brickley, K. & Stephenson, F. A. Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J. Biol. Chem.281, 27216–27228 (2006). ArticleCASPubMed Google Scholar
Grishin, A., Li, H., Levitan, E. S. & Zaks-Makhina, E. Identification of γ-aminobutyric acid receptor-interacting factor 1 (TRAK2) as a trafficking factor for the K+ channel Kir2.1. J. Biol. Chem.281, 30104–30111 (2006). ArticleCASPubMed Google Scholar
Kirk, E., Chin, L. S. & Li, L. GRIF1 binds Hrs and is a new regulator of endosomal trafficking. J. Cell Sci.119, 4689–4701 (2006). ArticleCASPubMed Google Scholar
Webber, E., Li, L. & Chin, L. S. Hypertonia-associated protein Trak1 is a novel regulator of endosome-to-lysosome trafficking. J. Mol. Biol.382, 638–651 (2008). ArticleCASPubMedPubMed Central Google Scholar
MacAskill, A. F., Brickley, K., Stephenson, F. A. & Kittler, J. T. GTPase dependent recruitment of Grif-1by Miro1 regulates mitochondrial trafficking in hippocampal neurons. Mol. Cell. Neurosci.40, 301–312 (2009). ArticleCASPubMed Google Scholar
Brickley, K. & Stephenson, F. A. Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J. Biol. Chem.286, 18079–18092 (2011). References 55 and 56 provide evidence that elevating MIRO1 levels enhances the recruitment of the TRAK2–KIF5 transport complex to mitochondria and that knocking down TRAK1 or expressing dominant-negative TRAK1 mutants results in impaired mitochondrial mobility in axons. ArticleCASPubMedPubMed Central Google Scholar
Ikuta, J. et al. Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem. Biophys. Res. Commun.353, 127–132 (2007). ArticleCASPubMed Google Scholar
Fujita T. et al. Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochem. Biophys. Res. Commun.361, 605–610 (2007). ArticleCASPubMed Google Scholar
Cho, K. I. et al. Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic8, 1722–1735 (2007). ArticleCASPubMed Google Scholar
Schwarzer, C., Barnikol-Watanabe, S., Thinnes, F. P. & Hilschmann, N. Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctex1 and the heat-shock protein PBP74. Int. J. Biochem. Cell Biol.34, 1059–1070 (2002). ArticleCASPubMed Google Scholar
King, S. J. & Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nature Cell Biol.2, 20–24 (2000). ArticleCASPubMed Google Scholar
Haghnia, M. et al. Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol. Biol. Cell18, 2081–2089 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cai, Q. et al. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons. Neuron68, 73–86 (2010). ArticleCASPubMedPubMed Central Google Scholar
Russo, G. J. et al. Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J. Neurosci.29, 5443–5455 (2009). This study suggests that MIRO promotes either kinesin- or dynein-mediated movement during a neuronal signal that dictates the net transport direction of mitochondria. ArticleCASPubMedPubMed Central Google Scholar
Hirokawa, N., Sato-Yoshitake, R., Yoshida, T. & Kawashima, T. Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J. Cell Biol.111, 1027–1037 (1990). ArticleCASPubMed Google Scholar
Ligon, L. A., Tokito, M., Finklestein, J. M., Grossman, F. E. & Holzbaur, E. L. A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. J. Biol. Chem.279, 19201–19208 (2004). ArticleCASPubMed Google Scholar
Mallik, R., Petrov, D., Lex, S. A., King, S. J. & Gross, S. P. Building complexity: an in vitro study of cytoplasmic dynein with in vivo implications. Curr. Biol.15, 2075–2085 (2005). ArticleCASPubMed Google Scholar
Horiuchi, D., Barkus, R. V., Pilling, A. D., Gassman, A. & Saxton, W. M. APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr. Biol.15, 2137–2141 (2005). ArticleCASPubMedPubMed Central Google Scholar
Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J. & Baloh, R. H. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci.30, 4232–4240 (2010). This study highlights a role of the MIRO2–MFN2 complex in regulating the processivity of kinesin or in coordinating the switch between kinesin and dynein. ArticleCASPubMedPubMed Central Google Scholar
Morris, R. L. & Hollenbeck, P. J. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. Cell Biol.131, 1315–1326 (1995). ArticleCASPubMed Google Scholar
Naisbitt, S. et al. Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J. Neurosci.20, 4524–4534 (2000). ArticleCASPubMedPubMed Central Google Scholar
Chada, S. R. & Hollenbeck, P. J. Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr. Biol.14, 1272–1276 (2004). ArticleCASPubMed Google Scholar
Pathak, D., Sepp, K. J. & Hollenbeck, P. J. Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J. Neurosci.30, 8984–8992 (2010). References 74 and 75 provide compelling evidence that NGF can regulate mitochondrial mobility by influencing static interactions between mitochondria and actin and that inhibiting actin-based myosin motors results in increased mitochondrial mobility. ArticleCASPubMedPubMed Central Google Scholar
Hubley, M. J., Locke, B. R. & Moerland, T. S. The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. Biochim. Biophys. Acta1291, 115–121 (1996). ArticlePubMed Google Scholar
Hirokawa, N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol.94, 129–142 (1982). This study provides the first morphological evidence for the crossbridges between axonal mitochondria and microtubules or neurofilaments. ArticleCASPubMedPubMed Central Google Scholar
Lindén, M., Nelson, B. D., Loncar, D. & Leterrier, J. F. Studies on the interaction between mitochondria and the cytoskeleton. J. Bioenerg. Biomembr.21, 507–518 (1989). ArticlePubMed Google Scholar
Jung, D., Filliol, D., Miehe, M. & Rendon, A. Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 or TAU. Cell Motil. Cytoskeleton24, 245–255 (1993). ArticleCASPubMed Google Scholar
Price, R. L., Lasek, R. J. & Katz, M. J. Microtubules have special physical associations with smooth endoplasmic reticula and mitochondria in axons. Brain Res.540, 209–216 (1991). ArticleCASPubMed Google Scholar
Chen, Y. M., Gerwin, C. & Sheng, Z.-H. Dynein light chain LC8 regulates syntaphilin-mediated mitochondrial docking in axons. J. Neurosci.29, 9429–9438 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sung, J. Y. et al. WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines. Proc. Natl Acad. Sci. USA.105, 3112–3116 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chang, D. T., Honick, A. S. & Reynolds, I. J. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J. Neurosci.26, 7035–7045 (2006). This study demonstrates that mitochondrial mobility is regulated in response to changes in synaptic activity. ArticleCASPubMedPubMed Central Google Scholar
Chang, K. T., Niescier, R. F. & Min, K. T. Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc. Natl Acad. Sci. USA108, 15456–15461 (2011). ArticleCASPubMedPubMed Central Google Scholar
Han, X. J. et al. CaM kinase I α-induced phosphorylation of Drp1 regulates mitochondrial morphology. J. Cell Biol.182, 573–585 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chen, S., Owens, G. C., Crossin, K. L. & Edelman, D. B. Serotonin stimulates mitochondrial transport in hippocampal neurons. Mol. Cell. Neurosci.36, 472–483 (2007). ArticleCASPubMed Google Scholar
Rintoul, G. L., Bennett, V. J., Papaconstandinou, N. A. & Reynolds, I. J. Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J. Neurochem.97, 800–806 (2006). ArticleCASPubMed Google Scholar
Zanelli, S. A. et al. Nitric oxide impairs mitochondrial movement in cortical neurons during hypoxia. J. Neurochem.97, 724–736 (2006). ArticleCASPubMed Google Scholar
Stamer, K., Vogel, R., Thies, E., Mandelkow, E. & Mandelkow, E. M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol.156, 1051–1063 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dubey, M., Chaudhury, P., Kabiru, H. & Shea, T. B. Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by displacing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability. Cell Motil. Cytoskeleton65, 89–99 (2008). ArticleCASPubMed Google Scholar
Stoothoff, W. et al. Differential effect of three-repeat and four-repeat tau on mitochondrial axonal transport. J. Neurochem.111, 417–427 (2009). ArticleCASPubMedPubMed Central Google Scholar
Trinczek, B., Ebneth, A., Mandelkow, E. M. & Mandelkow, E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J. Cell Sci.112, 2355–2367 (1999). CASPubMed Google Scholar
Mandelkow, E. M., Thies, E., Trinczek, B., Biernat, J. & Mandelkow, E. MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J. Cell Biol.167, 99–110 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science319, 1086–1089 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jiménez-Mateos, E. M., González-Billault, C., Dawson, H. N., Vitek, M. P. & Avila, J. Role of MAP1B in axonal retrograde transport of mitochondria. Biochem. J.397, 53–59 (2006). ArticlePubMedPubMed Central Google Scholar
Ohno, N. et al. Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J. Neurosci.31, 7249–7258 (2011). ArticleCASPubMedPubMed Central Google Scholar
Craner, M. J. et al. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc. Natl Acad. Sci. USA101, 8168–8173 (2004). ArticleCASPubMedPubMed Central Google Scholar
Andrews, H. et al. Increased axonal mitochondrial activity as an adaptation to myelin deficiency in the Shiverer mouse. J. Neurosci. Res.83, 1533–1539 (2006). ArticleCASPubMed Google Scholar
Hogan, V. et al. Increase in mitochondrial density within axons and supporting cells in response to demyelination in the Plp1 mouse model. J. Neurosci. Res.87, 452–459 (2009). ArticleCASPubMed Google Scholar
Kiryu-Seo, S., Ohno, N., Kidd, G. J., Komuro, H. & Trapp, B. D. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J. Neurosci.30, 6658–6666 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shepherd, G. M. & Harris, K. M. Three-dimensional structure and composition of CA3-CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci.18, 8300–8310 (1998). ArticleCASPubMedPubMed Central Google Scholar
Rowland, K. C., Irby, N. K. & Spirou, G. A. Specialized synapse-associated structures within the calyx of Held. J. Neurosci.20, 9135–9144 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ma, H., Cai, Q., Lu, W., Sheng, Z.-H. & Mochida, S. KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons. J. Neurosci.29, 13019–13029 (2009). ArticleCASPubMedPubMed Central Google Scholar
Gross, N. J., Getz, G. S. & Rabinowitz, M. Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J. Biol. Chem.244, 1552–1562 (1969). CASPubMed Google Scholar
Menzies, R. A. & Gold, P. H. The turnover of mitochondria in a variety of tissues of young adult and aged rats. J. Biol. Chem.246, 2425–2429 (1971). CASPubMed Google Scholar
Chen, H. & Chan, D. C. Mitochondrial dynamics — fusion, fission, movement, and mitophagy — in neurodegenerative diseases. Hum. Mol. Genet.18, 169–176 (2009). ArticleCAS Google Scholar
Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biol.11, 958–966 (2009). ArticleCASPubMed Google Scholar
Liu, X. & Hajnoczky, G. Ca2+-dependent regulation of mitochondrial dynamics by the Miro–Milton complex. Int. J. Biochem . Cell Biol.41, 1972–1976 (2009). ArticleCASPubMedPubMed Central Google Scholar
Varadi, A. et al. Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1. J. Cell Sci.117, 4389–4400 (2004). ArticleCASPubMed Google Scholar
Baloh, R. H., Schmidt, R. E., Pestronk, A. & Milbrandt, J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J. Neurosci.27, 422–430 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol.160, 189–200 (2003). ArticleCASPubMedPubMed Central Google Scholar
Detmer, S. A., Vande Velde, C., Cleveland, D. W. & Chan, D. C. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Hum. Mol. Genet.17, 367–375 (2008). ArticleCASPubMed Google Scholar
Chen, H., McCaffery, J. M. & Chan, D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell130, 548–562 (2007). ArticleCASPubMed Google Scholar
Weihofen, A. et al. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry48, 2045–2052 (2009). ArticleCASPubMed Google Scholar
Yu, W., Sun, Y., Guo, S. & Lu, B. The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum. Mol. Genet.20, 3227–3240 (2011). ArticleCASPubMedPubMed Central Google Scholar
Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol.183, 795–803 (2008). ArticleCASPubMedPubMed Central Google Scholar
Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M. & Youle, R. J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy6, 1090–1106 (2010). ArticleCASPubMedPubMed Central Google Scholar
Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biol.12, 119–131 (2010). ArticleCASPubMed Google Scholar
Lee, J. Y., Nagano, Y., Taylor, J. P., Lim, K. L. & Yao, T. P. Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol.189, 671–679 (2010). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol.189, 211–221 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA107, 378–383 (2010). ArticleCASPubMed Google Scholar
Chan, N. C. et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet.20, 1726–1737 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yoshii, S. R., Kishi, C., Ishihara, N. & Mizushima, N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem.286, 19630–19640 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell147, 893–906 (2011). This study demonstrated that the PINK1–parkin pathway also regulates mitochondrial transport, which may help to quarantine parkin-labelled damaged mitochondria for clearance by mitophagy. ArticleCASPubMedPubMed Central Google Scholar
Deng, H., Dodson, M. W., Huang, H. & Guo, M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl Acad. Sci. USA105, 14503–14508 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yang, Y. et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl Acad. Sci. USA105, 7070–7075 (2008). ArticleCASPubMedPubMed Central Google Scholar
Park, J., Lee, G. & Chung, J. The PINK1–Parkin pathway is involved in the regulation of mitochondrial remodeling process. Biochem. Biophys. Res. Commun.378, 518–523 (2009). ArticleCASPubMed Google Scholar
Exner, N. et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci.27, 12413–12418 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wood-Kaczmar, A. et al. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE3, e2455 (2008). ArticleCASPubMedPubMed Central Google Scholar
Dagda, R. K. et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem.284, 13843–13855 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sandebring, A. et al. Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE4, e5701 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lutz, A. K. et al. Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem.284, 22938–22951 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ziviani, E., Tao, R. N. & Whitworth, A. J. Drosphila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin. Proc. Natl Acad. Sci. USA107, 5018–5023 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gegg, M. E. et al. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet.19, 4861–4870 (2010). ArticleCASPubMedPubMed Central Google Scholar
Poole, A. C. et al. The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway. PLoS ONE5, e10054 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol.191, 1367–1380 (2010). ArticleCASPubMedPubMed Central Google Scholar
Miller, K. E. & Sheetz, M. P. Axonal mitochondrial transport and potential are correlated. J. Cell Sci.117, 2791–2804 (2004). This study demonstrates that mitochondria with a high membrane potential are transported anterogradely towards distal processes, whereas damaged mitochondria return to the cell body following acute depolarization. ArticleCASPubMed Google Scholar
Katsumata, K. et al. Dynein- and activity-dependent retrograde transport of autophagosomes in neuronal axons. Autophagy6, 378–385 (2010). ArticleCASPubMed Google Scholar
Lee, S., Sato, Y. & Nixon, R. A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy. J. Neurosci.31, 7817–7830 (2011). ArticleCASPubMedPubMed Central Google Scholar
Verburg, J. & Hollenbeck, P. J. Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J. Neurosci.28, 8306–8315 (2008). This paper provides evidence that mobile and stationary mitochondria show no difference in membrane potential under physiological conditions. ArticleCASPubMedPubMed Central Google Scholar
Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol.11, 45–53 (1999). ArticleCASPubMed Google Scholar
Foth, B. J., Goedecke, M. C. & Soldati, D. New insights into myosin evolution and classification. Proc. Natl Acad. Sci. USA103, 3681–3686 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cai, Q. & Sheng, Z.-H. in Mitochondrial Dynamics and Neurodegeneration (ed. Lu, B.) 139–168 (Springer, Dordrecht, 2011). Book Google Scholar
de Castro, I. P., Martins, L. M. & Tufi, R. Mitochondrial quality control and neurological disease: an emerging connection. Expert Rev. Mol. Med.19, e12 (2010). ArticleCAS Google Scholar
Detmer, S. A. & Chan, D. C. Functions and dysfunctions of mitochondrial dynamics. Nature Rev. Mol. Cell Biol.8, 870–879 (2007). ArticleCAS Google Scholar
Westermann, B. Mitochondrial fusion and fission in cell life and death. Nature Rev. Mol. Cell Biol.11, 872–884 (2010). ArticleCAS Google Scholar
Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nature Rev. Mol. Cell Biol.12, 9–14 (2011). ArticleCAS Google Scholar
Wang, X. et al. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J. Neurochem.109, 153–159 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rui, Y., Tiwari, P., Xie, Z. & Zheng, J. Q. Acute impairment of mitochondrial trafficking by β-amyloid peptides in hippocampal neurons. J. Neurosci.26, 10480–10487 (2006). ArticleCASPubMedPubMed Central Google Scholar
Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science307, 1282–1288 (2005). ArticleCASPubMed Google Scholar
Sasaki, S. & Iwata, M. Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology47, 535–540 (1996). ArticleCASPubMed Google Scholar
De Vos, K. J. et al. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum. Mol. Genet.16, 2720–2728 (2007). ArticleCASPubMed Google Scholar
Magrané, J. et al. Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum. Mol. Genet.18, 4552–4564 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shi, P., Ström, A. L., Gal, J. & Zhu, H. Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport. Biochim. Biophys. Acta1802, 707–716 (2010). ArticleCASPubMedPubMed Central Google Scholar
Millecamps, S. et al. Alsin is partially associated with centrosome in human cells. Biochim. Biophys. Acta1745, 84–100 (2005). ArticleCASPubMed Google Scholar
Shan, X., Chiang, P. M., Price, D. L. & Wong, P. C. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc. Natl Acad. Sci. USA107, 16325–16330 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bosco, D. A. et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature Neurosci.13, 1396–1403 (2010). ArticleCASPubMed Google Scholar
Zhu, Y. B. & Sheng, Z. H. Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice. J. Biol. Chem.286, 23432–23440 (2011). ArticleCASPubMedPubMed Central Google Scholar
Caviston, J. P. & Holzbaur, E. L. Huntingtin as an essential integrator of intracellular vesicular trafficking. Trends Cell Biol.19, 147–155 (2009). ArticleCASPubMedPubMed Central Google Scholar
Caviston, J. P. et al. Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proc. Natl Acad. Sci. USA104, 10045–10050 (2007). ArticleCASPubMedPubMed Central Google Scholar
Colin, E. et al. Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J.27, 2124–2134 (2008). ArticleCASPubMedPubMed Central Google Scholar
Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol.24, 8195–8209 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chang, D. T., Rintoul, G. L., Pandipati, S. & Reynolds, I. J. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol. Dis.22, 388–400 (2006). ArticleCASPubMed Google Scholar
Song, W. et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nature Med.17, 377–382 (2011). ArticleCASPubMed Google Scholar
Orr, A. L. et al. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J. Neurosci.28, 2783–2792 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lee, H. J., Khoshaghideh, F., Lee, S. & Lee, S. J. Impairment of microtubule-dependent trafficking by overexpression of α-synuclein. Eur . J. Neurosci.24, 3153–3162 (2006). ArticlePubMed Google Scholar
Yang, F. et al. Parkin stabilizes microtubules through strong binding mediated by three independent domains. J. Biol. Chem.280, 17154–17162 (2005). ArticleCASPubMed Google Scholar
Gillardon, F. Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability — a point of convergence in Parkinsonian neurodegeneration? J. Neurochem.110, 1514–1522 (2009). ArticleCASPubMed Google Scholar