The immunology of atherosclerosis (original) (raw)
Lozano, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet380, 2095–2128 (2012). ArticlePubMed Google Scholar
Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med.351, 1296–1305 (2004). ArticleCASPubMed Google Scholar
Schiffrin, E. L., Lipman, M. L. & Mann, J. F. Chronic kidney disease: effects on the cardiovascular system. Circulation116, 85–97 (2007). ArticlePubMed Google Scholar
Hakeem, A., Bhatti, S. & Chang, S. M. Screening and risk stratification of coronary artery disease in end-stage renal disease. JACC Cardiovasc. Imaging7, 715–728 (2014). ArticlePubMed Google Scholar
Stenvinkel, P. et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int.55, 1899–1911 (1999). ArticleCASPubMed Google Scholar
Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med.352, 1685–1695 (2005). ArticleCASPubMed Google Scholar
Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature417, 750–754 (2002). ArticleCASPubMed Google Scholar
Williams, K. J. & Tabas, I. The response-to-retention hypothesis of early atherogenesis. Arterioscler. Thromb. Vasc. Biol.15, 551–561 (1995). ArticleCASPubMedPubMed Central Google Scholar
Libby, P., Ridker, P. M. & Hansson, G. K. Progress and challenges in translating the biology of atherosclerosis. Nature473, 317–325 (2011). ArticleCASPubMed Google Scholar
Hansson, G. K. & Hermansson, A. The immune system in atherosclerosis. Nat. Immunol.12, 204–212 (2011). ArticleCASPubMed Google Scholar
Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA92, 3893–3897 (1995). Discovery of the cellular immune response in the atherosclerotic plaque. ArticleCASPubMedPubMed Central Google Scholar
Frostegard, J. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis145, 33–43 (1999). Study demonstrating that atherosclerosis is a TH1-type disease. ArticleCASPubMed Google Scholar
Virchow, R. in Gesammelte Abhandlungen zur Wissenschaftlichen Medicin (Meidinger & Sohn Corp, 1856). Google Scholar
Anitschkoff, N. Über Veränderungen der Kaninchen-Aorta bei experimentelle Cholesterolinsteatose. Beitr. Path. Anat.56, 379–391 (in German) (1913). Google Scholar
de Beer, F. C. et al. Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br. Heart J.47, 239–243 (1982). ArticleCASPubMedPubMed Central Google Scholar
Liuzzo, G. et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N. Engl. J. Med.331, 417–424 (1994). Study demonstrating that CRP is a biomarker for cardiovascular disease. ArticleCASPubMed Google Scholar
Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med.336, 973–979 (1997). ArticleCASPubMed Google Scholar
Hirschfield, G. M. et al. Transgenic human C-reactive protein is not proatherogenic in apolipoprotein E-deficient mice. Proc. Natl Acad. Sci. USA102, 8309–8314 (2005). ArticleCASPubMedPubMed Central Google Scholar
Tennent, G. A. et al. Transgenic human CRP is not pro-atherogenic, pro-atherothrombotic or pro-inflammatory in apoE−/− mice. Atherosclerosis196, 248–255 (2008). ArticleCASPubMed Google Scholar
Morrone, G. et al. Recombinant interleukin 6 regulates the transcriptional activation of a set of human acute phase genes. J. Biol. Chem.263, 12554–12558 (1988). CASPubMed Google Scholar
Hoefer, I. E. et al. Novel methodologies for biomarker discovery in atherosclerosis. Eur. Heart J.36, 2635–2642 (2015). ArticleCASPubMed Google Scholar
Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med.359, 2195–2207 (2008). Report that patients with elevated CRP levels benefit from statin therapy. ArticleCASPubMed Google Scholar
Qureshi, A. R. et al. Inflammation, malnutrition, and cardiac disease as predictors of mortality in hemodialysis patients. J. Am. Soc. Nephrol.13 (Suppl. 1), S28–S36 (2002). PubMed Google Scholar
Tong, M. et al. Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality. Clin. J. Am. Soc. Nephrol.2, 889–897 (2007). ArticleCASPubMed Google Scholar
Norata, G. D., Garlanda, C. & Catapano, A. L. The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases. Trends Cardiovasc. Med.20, 35–40 (2010). ArticleCASPubMed Google Scholar
Deban, L. et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat. Immunol.11, 328–334 (2010). ArticleCASPubMed Google Scholar
Norata, G. D. et al. Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation120, 699–708 (2009). ArticleCASPubMed Google Scholar
Muhlestein, J. B. et al. Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. Circulation97, 633–636 (1998). ArticleCASPubMed Google Scholar
Caligiuri, G., Rottenberg, M., Nicoletti, A., Wigzell, H. & Hansson, G. K. Chlamydia pneumoniae infection does not induce or modify atherosclerosis in mice. Circulation103, 2834–2838 (2001). Study demonstrating thatChlamydia pneumoniaedoes not cause atherosclerosis. ArticleCASPubMed Google Scholar
Andraws, R., Berger, J. S. & Brown, D. L. Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA293, 2641–2647 (2005). Study demonstrating that antibiotics do not prevent myocardial infarction. ArticleCASPubMed Google Scholar
Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature472, 57–63 (2011). Study linking gut metabolism to cardiovascular disease. ArticleCASPubMedPubMed Central Google Scholar
Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet.43, 333–338 (2011). ArticleCASPubMedPubMed Central Google Scholar
Harismendy, O. et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature470, 264–268 (2011). ArticleCASPubMedPubMed Central Google Scholar
Davies, R. W. et al. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circ. Cardiovasc. Genet.5, 217–225 (2012). ArticleCASPubMedPubMed Central Google Scholar
Swanberg, M. et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat. Genet.37, 486–494 (2005). ArticleCASPubMed Google Scholar
Bjorkbacka, H. et al. Weak associations between human leucocyte antigen genotype and acute myocardial infarction. J. Intern. Med.268, 50–58 (2010). CASPubMed Google Scholar
Pentikainen, M. O., Oorni, K., Ala-Korpela, M. & Kovanen, P. T. Modified LDL — trigger of atherosclerosis and inflammation in the arterial intima. J. Intern. Med.247, 359–370 (2000). ArticleCASPubMed Google Scholar
Cybulsky, M. I. & Gimbrone, M. A. Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science251, 788–791 (1991). Discovery that the leukocyte-recruiting adhesion molecule VCAM-1 is induced during atherogenesis. ArticleCASPubMed Google Scholar
Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L. & Ross, R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler. Thromb. Vasc. Biol.18, 842–851 (1998). ArticleCASPubMed Google Scholar
Chevre, R. et al. High-resolution imaging of intravascular atherogenic inflammation in live mice. Circ. Res.114, 770–779 (2014). ArticleCASPubMed Google Scholar
McArdle, S., Mikulski, Z. & Ley, K. Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J. Exp. Med.213, 1117–1131 (2016). ArticleCASPubMedPubMed Central Google Scholar
Fowler, S., Shio, H. & Haley, N. J. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations. Lab. Invest.41, 372–378 (1979). CASPubMed Google Scholar
Robbins, C. S. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med.19, 1166–1172 (2013). ArticleCASPubMedPubMed Central Google Scholar
Goldstein, J. L., Ho, Y. K., Basu, S. K. & Brown, M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl Acad. Sci. USA76, 333–337 (1979). Discovery of scavenger receptor expression on macrophages. ArticleCASPubMedPubMed Central Google Scholar
Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol.13, 709–721 (2013). State-of-the-art review of the role of macrophages in atherosclerosis. ArticleCASPubMedPubMed Central Google Scholar
Kunjathoor, V. V. et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem.277, 49982–49988 (2002). ArticleCASPubMed Google Scholar
Buono, C., Anzinger, J. J., Amar, M. & Kruth, H. S. Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J. Clin. Invest.119, 1373–1381 (2009). ArticleCASPubMedPubMed Central Google Scholar
Park, Y. M., Febbraio, M. & Silverstein, R. L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J. Clin. Invest.119, 136–145 (2009). CASPubMed Google Scholar
Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol.164, 6166–6173 (2000). ArticleCASPubMed Google Scholar
Chinetti-Gbaguidi, G. et al. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ. Res.108, 985–995 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kadl, A. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res.107, 737–746 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000PrimeRep.6, 13 (2014). Google Scholar
Rong, J. X., Shapiro, M., Trogan, E. & Fisher, E. A. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc. Natl Acad. Sci. USA100, 13531–13536 (2003). ArticleCASPubMedPubMed Central Google Scholar
Feil, S. et al. Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ. Res.115, 662–667 (2014). Evidence for transdifferentiation accounting for foam cells of lesions. ArticleCASPubMed Google Scholar
Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med.21, 628–637 (2015). Further evidence that smooth muscle cells can develop into macrophage-like cells. ArticleCASPubMedPubMed Central Google Scholar
Allahverdian, S., Chehroudi, A. C., McManus, B. M., Abraham, T. & Francis, G. A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation129, 1551–1559 (2014). ArticleCASPubMed Google Scholar
Jonasson, L., Holm, J., Skalli, O., Bondjers, G. & Hansson, G. K. Regional accumulations of T-cells, macrophages, and smooth-muscle cells in the human atherosclerotic plaque. Arteriosclerosis6, 131–138 (1986). Discovery of immune cells in atherosclerosis. ArticleCASPubMed Google Scholar
Richardson, P. D., Davies, M. J. & Born, G. V. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet2, 941–944 (1989). ArticleCASPubMed Google Scholar
Naghavi, M. et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation108, 1664–1672 (2003). ArticlePubMed Google Scholar
van der Wal, A. C., Becker, A. E., van der Loos, C. M. & Das, P. K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation89, 36–44 (1994). ArticleCASPubMed Google Scholar
Kubo, T. et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol.50, 933–939 (2007). ArticlePubMed Google Scholar
Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol.20, 1262–1275 (2000). ArticleCASPubMed Google Scholar
Libby, P. & Pasterkamp, G. Requiem for the 'vulnerable plaque'. Eur. Heart J.36, 2984–2987 (2015). Provocative review on the changing features of acute coronary syndromes. PubMed Google Scholar
van Lammeren, G. W. et al. Time-dependent changes in atherosclerotic plaque composition in patients undergoing carotid surgery. Circulation129, 2269–2276 (2014). ArticleCASPubMed Google Scholar
Amento, E. P., Ehsani, N., Palmer, H. & Libby, P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb.11, 1223–1230 (1991). ArticleCASPubMed Google Scholar
Ovchinnikova, O. A. et al. The collagen cross-linking enzyme lysyl oxidase is associated with the healing of human atherosclerotic lesions. J. Intern. Med.276, 525–536 (2014). ArticleCASPubMed Google Scholar
Hansson, G. K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med.170, 1595–1608 (1989). ArticleCASPubMed Google Scholar
Ovchinnikova, O. et al. T-cell activation leads to reduced collagen maturation in atherosclerotic plaques of Apoe−/− mice. Am. J. Pathol.174, 693–700 (2009). ArticleCASPubMedPubMed Central Google Scholar
Back, M., Ketelhuth, D. F. & Agewall, S. Matrix metalloproteinases in atherothrombosis. Prog. Cardiovasc. Dis.52, 410–428 (2010). ArticleCASPubMed Google Scholar
Kovanen, P. T., Kaartinen, M. & Paavonen, T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation92, 1084–1088 (1995). ArticleCASPubMed Google Scholar
Ehara, S. et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation110, 3424–3429 (2004). ArticlePubMed Google Scholar
Edfeldt, K., Swedenborg, J., Hansson, G. K. & Yan, Z. Q. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation105, 1158–1161 (2002). Discovery of Toll-like receptors in human atherosclerosis. ArticleCASPubMed Google Scholar
Miller, Y. I. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem.278, 1561–1568 (2003). ArticleCASPubMed Google Scholar
Lundberg, A. M. & Hansson, G. K. Innate immune signals in atherosclerosis. Clin. Immunol.134, 5–24 (2010). ArticleCASPubMed Google Scholar
Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med.10, 416–421 (2004). Study demonstrating an effect of innate immune activation on atherosclerosis. ArticleCASPubMed Google Scholar
Hurt-Camejo, E., Camejo, G., Peilot, H., Oorni, K. & Kovanen, P. Phospholipase A2 in vascular disease. Circ. Res.89, 298–304 (2001). ArticleCASPubMed Google Scholar
Lonn, E. et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA293, 1338–1347 (2005). ArticlePubMed Google Scholar
Mann, J. F. et al. Homocysteine lowering with folic acid and B vitamins in people with chronic kidney disease — results of the renal Hope-2 study. Nephrol. Dial. Transplant.23, 645–653 (2008). ArticleCASPubMed Google Scholar
White, H. D. et al. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med.370, 1702–1711 (2014). ArticleCASPubMed Google Scholar
O'Donoghue, M. L. et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA312, 1006–1015 (2014). ArticleCASPubMed Google Scholar
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature464, 1357–1361 (2010). Study showing that cholesterol crystals activate the inflammasome in early atherogenesis. ArticleCASPubMedPubMed Central Google Scholar
Rajamaki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE5, e11765 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ridker, P. M., Thuren, T., Zalewski, A. & Libby, P. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J.162, 597–605 (2011). ArticleCASPubMed Google Scholar
Loppnow, H. & Libby, P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J. Clin. Invest.85, 731–738 (1990). ArticleCASPubMedPubMed Central Google Scholar
Maier, W. et al. Inflammatory markers at the site of ruptured plaque in acute myocardial infarction: locally increased interleukin-6 and serum amyloid A but decreased C-reactive protein. Circulation111, 1355–1361 (2005). ArticleCASPubMed Google Scholar
Biasucci, L. M. et al. Elevated levels of interleukin-6 in unstable angina. Circulation94, 874–877 (1996). ArticleCASPubMed Google Scholar
Drechsler, M., Megens, R. T., van Zandvoort, M., Weber, C. & Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation122, 1837–1845 (2010). ArticleCASPubMed Google Scholar
Tupin, E. et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med.199, 417–422 (2004). Study demonstrating a role of lipid-recognizing natural killer T cells in atherosclerosis. ArticleCASPubMedPubMed Central Google Scholar
Whitman, S. C., Rateri, D. L., Szilvassy, S. J., Yokoyama, W. & Daugherty, A. Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice. Arterioscler. Thromb. Vasc. Biol.24, 1049–1054 (2004). ArticleCASPubMed Google Scholar
van Puijvelde, G. H. et al. Effect of natural killer T cell activation on the initiation of atherosclerosis. Thromb. Haemost.102, 223–230 (2009). ArticleCASPubMed Google Scholar
Cheng, H. Y., Wu, R. & Hedrick, C. C. Gammadelta (γδ) T lymphocytes do not impact the development of early atherosclerosis. Atherosclerosis234, 265–269 (2014). ArticleCASPubMedPubMed Central Google Scholar
Elhage, R. et al. Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am. J. Pathol.165, 2013–2018 (2004). ArticlePubMedPubMed Central Google Scholar
Jonasson, L., Holm, J., Skalli, O., Gabbiani, G. & Hansson, G. K. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J. Clin. Invest.76, 125–131 (1985). ArticleCASPubMedPubMed Central Google Scholar
Bobryshev, Y. V. & Lord, R. S. Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions. Cardiovasc. Res.37, 799–810 (1998). ArticleCASPubMed Google Scholar
Llodra, J. et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl Acad. Sci. USA101, 11779–11784 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bui, M. N. et al. Autoantibody titers to oxidized low-density lipoprotein in patients with coronary atherosclerosis. Am. Heart J.131, 663–667 (1996). ArticleCASPubMed Google Scholar
Wu, R., Huang, Y. H., Elinder, L. S. & Frostegard, J. Lysophosphatidylcholine is involved in the antigenicity of oxidized LDL. Arterioscler. Thromb. Vasc. Biol.18, 626–630 (1998). ArticleCASPubMed Google Scholar
Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest.105, 1731–1740 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fredrikson, G. N. et al. Identification of immune responses against aldehyde-modified peptide sequences in apoB associated with cardiovascular disease. Arterioscler. Thromb. Vasc. Biol.23, 872–878 (2003). ArticleCASPubMed Google Scholar
Xu, Q., Kleindienst, R., Waitz, W., Dietrich, H. & Wick, G. Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J. Clin. Invest.91, 2693–2702 (1993). ArticleCASPubMedPubMed Central Google Scholar
Benagiano, M. et al. Human 60-kDa heat shock protein is a target autoantigen of T cells derived from atherosclerotic plaques. J. Immunol.174, 6509–6517 (2005). ArticleCASPubMed Google Scholar
George, J., Afek, A., Gilburd, B., Shoenfeld, Y. & Harats, D. Cellular and humoral immune responses to heat shock protein 65 are both involved in promoting fatty-streak formation in LDL-receptor deficient mice. J. Am. Coll. Cardiol.38, 900–905 (2001). ArticleCASPubMed Google Scholar
Schett, G. et al. Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J. Clin. Invest.96, 2569–2577 (1995). ArticleCASPubMedPubMed Central Google Scholar
Wick, G., Jakic, B., Buszko, M., Wick, M. C. & Grundtman, C. The role of heat shock proteins in atherosclerosis. Nat. Rev. Cardiol.11, 516–529 (2014). ArticleCASPubMed Google Scholar
Maron, R. et al. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation106, 1708–1715 (2002). ArticleCASPubMed Google Scholar
Klingenberg, R., Ketelhuth, D. F., Strodthoff, D., Gregori, S. & Hansson, G. K. Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoe−/− mice. Immunobiology217, 540–547 (2012). ArticleCASPubMed Google Scholar
George, J. et al. Adoptive transfer of beta2-glycoprotein I-reactive lymphocytes enhances early atherosclerosis in LDL receptor-deficient mice. Circulation102, 1822–1827 (2000). ArticleCASPubMed Google Scholar
Duner, P. et al. Immunization of apoE−/− mice with aldehyde-modified fibronectin inhibits the development of atherosclerosis. Cardiovasc. Res.91, 528–536 (2011). ArticleCASPubMed Google Scholar
Grabner, R. et al. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med.206, 233–248 (2009). ArticleCASPubMedPubMed Central Google Scholar
Martel, C. et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J. Clin. Invest.123, 1571–1579 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cuffy, M. C. et al. Induction of indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-gamma contributes to medial immunoprivilege. J. Immunol.179, 5246–5254 (2007). ArticleCASPubMed Google Scholar
Galkina, E. et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med.203, 1273–1282 (2006). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, M. et al. Distribution of inflammatory cells in adventitia changed with advancing atherosclerosis of human coronary artery. J. Atheroscler. Thromb.14, 325–331 (2007). ArticlePubMed Google Scholar
Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity42, 1100–1115 (2015). Study describing the formation of tertiary lymphoid organs around atherosclerotic arteries. ArticleCASPubMedPubMed Central Google Scholar
Clement, M. et al. Control of the T follicular helper-germinal center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation131, 560–570 (2015). ArticleCASPubMed Google Scholar
Hansson, G. K., Holm, J. & Jonasson, L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol.135, 169–175 (1989). CASPubMedPubMed Central Google Scholar
Zhou, X., Stemme, S. & Hansson, G. K. Evidence for a local immune response in atherosclerosis. CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am. J. Pathol.149, 359–366 (1996). CASPubMedPubMed Central Google Scholar
Stemme, S., Holm, J. & Hansson, G. K. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. Arterioscler. Thromb.12, 206–211 (1992). ArticleCASPubMed Google Scholar
Paulsson, G., Zhou, X., Tornquist, E. & Hansson, G. K. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol.20, 10–17 (2000). ArticleCASPubMed Google Scholar
Zhou, X., Nicoletti, A., Elhage, R. & Hansson, G. K. Transfer of CD4+ T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation102, 2919–2922 (2000). ArticleCASPubMed Google Scholar
Zhou, X., Robertson, A. K., Hjerpe, C. & Hansson, G. K. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler. Thromb. Vasc. Biol.26, 864–870 (2006). ArticleCASPubMed Google Scholar
Dansky, H. M., Charlton, S. A., Harper, M. M. & Smith, J. D. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA94, 4642–4646 (1997). ArticleCASPubMedPubMed Central Google Scholar
Daugherty, A. et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J. Clin. Invest.100, 1575–1580 (1997). ArticleCASPubMedPubMed Central Google Scholar
Emeson, E. E., Shen, M. L., Bell, C. G. & Qureshi, A. Inhibition of atherosclerosis in CD4 T-cell-ablated and nude (nu/nu) C57BL/6 hyperlipidemic mice. Am. J. Pathol.149, 675–685 (1996). CASPubMedPubMed Central Google Scholar
Olofsson, P. S. et al. CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. Circulation117, 1292–1301 (2008). ArticleCASPubMed Google Scholar
Hermansson, A. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J. Exp. Med.207, 1081–1093 (2010). Study showing that T cells recognize ApoB peptides of LDL. ArticleCASPubMedPubMed Central Google Scholar
Gupta, S. et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest.99, 2752–2761 (1997). Study showing that the TH1 cytokine IFNγpromotes atherosclerosis. ArticleCASPubMedPubMed Central Google Scholar
Whitman, S. C., Ravisankar, P. & Daugherty, A. IFN-gamma deficiency exerts gender-specific effects on atherogenesis in apolipoprotein E−/− mice. J. Interferon Cytokine Res.22, 661–670 (2002). ArticleCASPubMed Google Scholar
Buono, C. et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol.23, 454–460 (2003). ArticleCASPubMed Google Scholar
Buono, C. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl Acad. Sci. USA102, 1596–1601 (2005). Study showing that the TH1 pathway is proatherogenic. ArticleCASPubMedPubMed Central Google Scholar
Pober, J. S. et al. Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J. Exp. Med.157, 1339–1353 (1983). ArticleCASPubMed Google Scholar
Hansson, G. K., Jonasson, L., Holm, J., Clowes, M. M. & Clowes, A. W. Gamma-interferon regulates vascular smooth muscle proliferation and Ia antigen expression in vivo and in vitro. Circ. Res.63, 712–719 (1988). ArticleCASPubMed Google Scholar
Perisic, L. et al. Gene expression signatures, pathways and networks in carotid atherosclerosis. J. Intern. Med.279, 293–308 (2016). ArticleCASPubMed Google Scholar
Zhou, X., Paulsson, G., Stemme, S. & Hansson, G. K. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J. Clin. Invest.101, 1717–1725 (1998). ArticleCASPubMedPubMed Central Google Scholar
Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol.163, 1117–1125 (2003). ArticleCASPubMedPubMed Central Google Scholar
King, V. L., Szilvassy, S. J. & Daugherty, A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol.22, 456–461 (2002). ArticleCASPubMed Google Scholar
Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest.114, 427–437 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cardilo-Reis, L. et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med.4, 1072–1086 (2012). ArticleCASPubMedPubMed Central Google Scholar
Eid, R. E. et al. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation119, 1424–1432 (2009). ArticleCASPubMedPubMed Central Google Scholar
de Boer, O. J. et al. Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques. J. Pathol.220, 499–508 (2010). CASPubMed Google Scholar
Danzaki, K. et al. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol.32, 273–280 (2012). ArticleCASPubMed Google Scholar
Usui, F. et al. Interleukin-17 deficiency reduced vascular inflammation and development of atherosclerosis in Western diet-induced apoE-deficient mice. Biochem. Biophys. Res. Commun.420, 72–77 (2012). ArticleCASPubMed Google Scholar
Madhur, M. S. et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein e-deficient mice. Arterioscler. Thromb. Vasc. Biol.31, 1565–1572 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gao, Q. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J. Immunol.185, 5820–5827 (2010). ArticleCASPubMed Google Scholar
Erbel, C. et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J. Immunol.183, 8167–8175 (2009). ArticleCASPubMed Google Scholar
Smith, E. et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation121, 1746–1755 (2010). ArticleCASPubMedPubMed Central Google Scholar
Taleb, S. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med.206, 2067–2077 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cheng, X. et al. Inhibition of IL-17A in atherosclerosis. Atherosclerosis215, 471–474 (2011). ArticleCASPubMed Google Scholar
Gistera, A. et al. Transforming growth factor-beta signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci. Transl Med.5, 196ra100 (2013). Study of the plaque-stabilizing role of TH17 cells. ArticleCASPubMed Google Scholar
Cheng, X. et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin. Immunol.127, 89–97 (2008). ArticleCASPubMed Google Scholar
Simon, T. et al. Circulating levels of interleukin-17 and cardiovascular outcomes in patients with acute myocardial infarction. Eur. Heart J.34, 570–577 (2013). ArticleCASPubMed Google Scholar
de Boer, O. J., van der Meer, J. J., Teeling, P., van der Loos, C. M. & van der Wal, A. C. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS ONE2, e779 (2007). ArticleCASPubMedPubMed Central Google Scholar
Maganto-Garcia, E., Tarrio, M. L., Grabie, N., Bu, D. X. & Lichtman, A. H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation124, 185–195 (2011). ArticlePubMedPubMed Central Google Scholar
Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med.12, 178–180 (2006). Study showing an atheroprotective role of Tregcells. ArticleCASPubMed Google Scholar
Klingenberg, R. et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest.123, 1323–1334 (2013). Definitive evidence for an atheroprotective role of FOXP3+ Tregcells. ArticleCASPubMedPubMed Central Google Scholar
Mor, A. et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol.27, 893–900 (2007). ArticleCASPubMed Google Scholar
Dinh, T. N. et al. Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation126, 1256–1266 (2012). ArticleCASPubMed Google Scholar
Takeda, M. et al. Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler. Thromb. Vasc. Biol.30, 2495–2503 (2010). ArticleCASPubMed Google Scholar
Sasaki, N. et al. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation120, 1996–2005 (2009). ArticleCASPubMed Google Scholar
Kita, T. et al. Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc. Res.102, 107–117 (2014). ArticleCASPubMed Google Scholar
Foks, A. C. et al. Differential effects of regulatory T cells on the initiation and regression of atherosclerosis. Atherosclerosis218, 53–60 (2011). ArticleCASPubMed Google Scholar
Klingenberg, R. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol.30, 946–952 (2010). Study showing that mucosal vaccination protects against atherosclerosis. ArticleCASPubMed Google Scholar
Wigren, M. et al. Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine. J. Intern. Med.269, 546–556 (2011). ArticleCASPubMed Google Scholar
Herbin, O. et al. Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol.32, 605–612 (2012). ArticleCASPubMed Google Scholar
Mallat, Z. et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res.85, e17–e24 (1999). Discovery of the atheroprotective role of IL-10. ArticleCASPubMed Google Scholar
Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol.19, 2847–2853 (1999). ArticleCASPubMed Google Scholar
Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med.9, 10–17 (2003). ArticleCASPubMedPubMed Central Google Scholar
Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-beta regulation of immune responses. Annu. Rev. Immunol.24, 99–146 (2006). ArticleCASPubMed Google Scholar
Robertson, A. K. et al. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J. Clin. Invest.112, 1342–1350 (2003). Study demonstrating that the immunomodulatory action of TGFβ controls atherosclerosis. ArticleCASPubMedPubMed Central Google Scholar
Mallat, Z. et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ. Res.89, 930–934 (2001). ArticleCASPubMed Google Scholar
Lutgens, E. et al. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler. Thromb. Vasc. Biol.22, 975–982 (2002). ArticleCASPubMed Google Scholar
Frutkin, A. D. et al. TGF-β1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol.29, 1251–1257 (2009). ArticleCASPubMedPubMed Central Google Scholar
Reifenberg, K. et al. Overexpression of TGF-beta1 in macrophages reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice. PLoS ONE7, e40990 (2012). ArticleCASPubMedPubMed Central Google Scholar
Buday, A. et al. Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE−/− mice. Am. J. Physiol. Heart Circ. Physiol.299, H386–H395 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhou, X. & Hansson, G. K. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand. J. Immunol.50, 25–30 (1999). ArticleCASPubMed Google Scholar
Caligiuri, G., Nicoletti, A., Poirier, B. & Hansson, G. K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest.109, 745–753 (2002). Discovery of atheroprotective immunity carried by B cells. ArticleCASPubMedPubMed Central Google Scholar
Major, A. S., Fazio, S. & Linton, M. F. B-lymphocyte deficiency increases atherosclerosis in LDL receptor-null mice. Arterioscler. Thromb. Vasc. Biol.22, 1892–1898 (2002). ArticleCASPubMed Google Scholar
Robinette, C. D. & Fraumeni, J. F. Jr. Splenectomy and subsequent mortality in veterans of the 1939–1945 war. Lancet2, 127–129 (1977). ArticleCASPubMed Google Scholar
Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol.185, 4410–4419 (2010). ArticleCASPubMed Google Scholar
Kerekes, G. et al. Effects of rituximab treatment on endothelial dysfunction, carotid atherosclerosis, and lipid profile in rheumatoid arthritis. Clin. Rheumatol.28, 705–710 (2009). ArticlePubMed Google Scholar
Kyaw, T. et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ. Res.109, 830–840 (2011). ArticleCASPubMed Google Scholar
Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med.9, 736–743 (2003). Report that molecular mimicry with pneumococci is involved in LDL reactivity and atherosclerosis. ArticleCASPubMed Google Scholar
Centa, M. et al. Atherosclerosis susceptibility in mice is independent of the V1 immunoglobulin heavy chain gene. Arterioscler. Thromb. Vasc. Biol.36, 25–36 (2016). ArticleCASPubMed Google Scholar
Chang, M. K. et al. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J. Exp. Med.200, 1359–1370 (2004). ArticleCASPubMedPubMed Central Google Scholar
Grasset, E. K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proc. Natl Acad. Sci. USA112, E2030–E2038 (2015). ArticleCASPubMedPubMed Central Google Scholar
Isomaa, B. et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care24, 683–689 (2001). ArticleCASPubMed Google Scholar
Hotamisligil, G. S. Inflammation and metabolic disorders. Nature444, 860–867 (2006). Expert review on the role of inflammation in metabolic disorders. ArticleCASPubMed Google Scholar
Sammalkorpi, K., Valtonen, V., Kerttula, Y., Nikkila, E. & Taskinen, M. R. Changes in serum lipoprotein pattern induced by acute infections. Metab. Clin. Exp.37, 859–865 (1988). ArticleCASPubMed Google Scholar
Tracey, K. J. et al. Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J. Exp. Med.167, 1211–1227 (1988). ArticleCASPubMed Google Scholar
Beutler, B. & Cerami, A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature320, 584–588 (1986). Discovery of TNF as a metabolic cytokine — a pioneering study of immunometabolism. ArticleCASPubMed Google Scholar
Khovidhunkit, W. et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J. Lipid Res.45, 1169–1196 (2004). ArticleCASPubMed Google Scholar
Bensinger, S. J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell134, 97–111 (2008). ArticleCASPubMedPubMed Central Google Scholar
Holmqvist, M. E. et al. Rapid increase in myocardial infarction risk following diagnosis of rheumatoid arthritis amongst patients diagnosed between 1995 and 2006. J. Intern. Med.268, 578–585 (2010). Study demonstrating an increased risk of cardiovascular disease in patients with rheumatoid arthritis. ArticleCASPubMed Google Scholar
Kerekes, G. et al. Effects of biologics on vascular function and atherosclerosis associated with rheumatoid arthritis. Ann. NY Acad. Sci.1173, 814–821 (2009). ArticlePubMed Google Scholar
Jacobsson, L. T. et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J. Rheumatol.32, 1213–1218 (2005). Study demonstrating that TNF blockade protects against cardiovascular disease in patients with rheumatoid arthritis. CASPubMed Google Scholar
Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science341, 569–573 (2013). Study demonstrating that gut microbiota control regulatory immunity. ArticleCASPubMed Google Scholar
Park, J. et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol.8, 80–93 (2015). ArticleCASPubMed Google Scholar
Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med.19, 576–585 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sommer, F. & Backhed, F. The gut microbiota — masters of host development and physiology. Nat. Rev. Microbiol.11, 227–238 (2013). ArticleCASPubMed Google Scholar
Jonasson, L., Holm, J. & Hansson, G. K. Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc. Natl Acad. Sci. USA85, 2303–2306 (1988). ArticleCASPubMedPubMed Central Google Scholar
Marx, S. O. & Marks, A. R. Bench to bedside: the development of rapamycin and its application to stent restenosis. Circulation104, 852–855 (2001). ArticleCASPubMed Google Scholar
Back, M. & Hansson, G. K. Anti-inflammatory therapies for atherosclerosis. Nat. Rev. Cardiol.12, 199–211 (2015). ArticleCASPubMed Google Scholar
Palinski, W., Miller, E. & Witztum, J. L. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc. Natl Acad. Sci. USA92, 821–825 (1995). First report of protective immunity against atherosclerosis induced by vaccination. ArticleCASPubMedPubMed Central Google Scholar
Ameli, S. et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol.16, 1074–1079 (1996). ArticleCASPubMed Google Scholar
George, J. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis138, 147–152 (1998). ArticleCASPubMed Google Scholar
Zhou, X., Caligiuri, G., Hamsten, A., Lefvert, A. K. & Hansson, G. K. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol.21, 108–114 (2001). ArticleCASPubMed Google Scholar
Fredrikson, G. N. et al. Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler. Thromb. Vasc. Biol.23, 879–884 (2003). Study showing that ApoB vaccination reduces atherosclerosis in mice. ArticleCASPubMed Google Scholar
Gistera, A. et al. Vaccination against T-cell epitopes of native ApoB100 reduces vascular inflammation and disease in a humanized mouse model of atherosclerosis. J. Intern. Med.281, 383–397 (2017). ArticleCASPubMed Google Scholar
van Puijvelde, G. H. et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation114, 1968–1976 (2006). ArticleCASPubMed Google Scholar
Hermansson, A. et al. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation123, 1083–1091 (2011). Study of cellular immunotherapy targeting LDL in mice. ArticleCASPubMed Google Scholar
Ketelhuth, D. F., Gistera, A., Johansson, D. K. & Hansson, G. K. T cell-based therapies for atherosclerosis. Curr. Pharm. Des.19, 5850–5858 (2013). ArticleCASPubMed Google Scholar
Tsimikas, S. et al. Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J. Lipid Res.48, 425–433 (2007). ArticleCASPubMed Google Scholar
Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imaging8, 493–494 (2015). ArticlePubMed Google Scholar
Shoji, T. et al. Inverse relationship between circulating oxidized low density lipoprotein (oxLDL) and anti-oxLDL antibody levels in healthy subjects. Atherosclerosis148, 171–177 (2000). ArticleCASPubMed Google Scholar
Habets, K. L. et al. Vaccination using oxidized low-density lipoprotein-pulsed dendritic cells reduces atherosclerosis in LDL receptor-deficient mice. Cardiovasc. Res.85, 622–630 (2010). ArticleCASPubMed Google Scholar
Freigang, S., Horkko, S., Miller, E., Witztum, J. L. & Palinski, W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler. Thromb. Vasc. Biol.18, 1972–1982 (1998). ArticleCASPubMed Google Scholar
Schiopu, A. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation110, 2047–2052 (2004). ArticleCASPubMed Google Scholar
Ketelhuth, D. F. et al. Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses. Circulation124, 2433–2443 (2011). Study showing that ApoB activates innate immunity. ArticleCASPubMed Google Scholar
Dongre, A. R. et al. In vivo MHC class II presentation of cytosolic proteins revealed by rapid automated tandem mass spectrometry and functional analyses. Eur. J. Immunol.31, 1485–1494 (2001). ArticleCASPubMed Google Scholar