New and developing diagnostic technologies for urinary tract infections (original) (raw)
Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol.7, 653–660 (2010). ArticlePubMed Google Scholar
Griebling, T. L. Urologic diseases in America project: trends in resource use for urinary tract infections in women. J. Urol.173, 1281–1287 (2005). ArticlePubMed Google Scholar
Griebling, T. L. Urologic diseases in America project: trends in resource use for urinary tract infections in men. J. Urol.173, 1288–1294 (2005). ArticlePubMed Google Scholar
Wagenlehner, F. M. et al. Diagnosis and management for urosepsis. Int. J. Urol.20, 963–970 (2013). PubMed Google Scholar
Wilson, M. L. & Gaido, L. Laboratory diagnosis of urinary tract infections in adult patients. Clin. Infect. Dis.38, 1150–1158 (2004). ArticlePubMed Google Scholar
Kauffman, C. A. Diagnosis and management of fungal urinary tract infection. Infect. Dis. Clin. North Am.28, 61–74 (2014). ArticlePubMed Google Scholar
Sobel, J. D., Fisher, J. F., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections — epidemiology. Clin. Infect. Dis.52 (Suppl. 6), S433–S436 (2011). ArticlePubMed Google Scholar
Colomer-Lluch, M., Jofre, J. & Muniesa, M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples. PLoS ONE6, e17549 (2011). ArticleCASPubMedPubMed Central Google Scholar
Boyd, L. B. et al. Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of culture site, age, sex, and location. BMC Infect. Dis.8, 4 (2008). ArticleCASPubMedPubMed Central Google Scholar
Johnson, L. et al. Emergence of fluoroquinolone resistance in outpatient urinary Escherichia coli isolates. Am. J. Med.121, 876–884 (2008). ArticleCASPubMed Google Scholar
Sanchez, G. V. et al. Antibiotic resistance among urinary isolates from female outpatients in the United States in 2003 and 2012. Antimicrob. Agents Chemother.60, 2680–2683 (2016). ArticleCASPubMedPubMed Central Google Scholar
Bouchillon, S. K., Badal, R. E., Hoban, D. J. & Hawser, S. P. Antimicrobial susceptibility of inpatient urinary tract isolates of gram-negative bacilli in the United States: results from the study for monitoring antimicrobial resistance trends (SMART) program: 2009–2011. Clin. Ther.35, 872–877 (2013). ArticleCASPubMed Google Scholar
Cox, H. U. & Luther, D. G. Determination of antimicrobial susceptibility of Pseudomonas aeruginosa by disk diffusion and microdilution methods. Am. J. Vet. Res.41, 906–909 (1980). CASPubMed Google Scholar
Cai, T. et al. Asymptomatic bacteriuria treatment is associated with a higher prevalence of antibiotic resistant strains in women with urinary tract infections. Clin. Infect. Dis.61, 1655–1661 (2015). CASPubMed Google Scholar
Gross, P. A. & Patel, B. Reducing antibiotic overuse: a call for a national performance measure for not treating asymptomatic bacteriuria. Clin. Infect. Dis.45, 1335–1337 (2007). ArticlePubMed Google Scholar
Suriano, F. et al. Bacteriuria in patients with an orthotopic ileal neobladder: urinary tract infection or asymptomatic bacteriuria? BJU Int.101, 1576–1579 (2008). ArticlePubMed Google Scholar
Loeb, S., Carter, H. B., Berndt, S. I., Ricker, W. & Schaeffer, E. M. Complications after prostate biopsy: data from SEER-Medicare. J. Urol.186, 1830–1834 (2011). ArticlePubMed Google Scholar
Halpern, J. A. et al. Indications, utilization, and complications following prostate biopsy: a New York state analysis. J. Urol.http://dx.doi.org/10.1016/j.juro.2016.11.081 (2016).
Cussans, A., Somani, B. K., Basarab, A. & Dudderidge, T. J. The role of targeted prophylactic antimicrobial therapy before transrectal ultrasonography-guided prostate biopsy in reducing infection rates: a systematic review. BJU Int.117, 725–731 (2016). ArticleCASPubMed Google Scholar
Deville, W. L. et al. The urine dipstick test useful to rule out infections. A meta-analysis of the accuracy. BMC Urol.4, 4 (2004). ArticlePubMedPubMed Central Google Scholar
Kunin, C. M. (ed.) Urinary Tract Infections: Detection, Prevention, and Management (Williams & Wilkins, 1997). Google Scholar
D'Souza, H. A., Campbell, M. & Baron, E. J. Practical bench comparison of BBL CHROMagar Orientation and standard two-plate media for urine cultures. J. Clin. Microbiol.42, 60–64 (2004). ArticlePubMedPubMed Central Google Scholar
Arena, F., Viaggi, B., Galli, L. & Rossolini, G. M. Antibiotic susceptibility testing: present and future. Pediatr. Infect. Dis. J.34, 1128–1130 (2015). ArticlePubMed Google Scholar
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing in M100. CLSIhttp://clsi.org/m100/ (2015).
Eigner, U., Schmid, A., Wild, U., Bertsch, D. & Fahr, A. M. Analysis of the comparative workflow and performance characteristics of the VITEK 2 and Phoenix systems. J. Clin. Microbiol.43, 3829–3834 (2005). ArticleCASPubMedPubMed Central Google Scholar
Thomson, K. S. et al. Comparison of Phoenix and VITEK 2 extended-spectrum-beta-lactamase detection tests for analysis of Escherichia coli and Klebsiella isolates with well-characterized beta-lactamases. J. Clin. Microbiol.45, 2380–2384 (2007). ArticleCASPubMedPubMed Central Google Scholar
Caliendo, A. M. et al. Better tests, better care: improved diagnostics for infectious diseases. Clin. Infect. Dis.57 (Suppl. 3), S139–S170 (2013). ArticlePubMed Google Scholar
Society for Healthcare Epidemiology, Infectious Diseases Society of America & Pediatric Infectious Diseases Society. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect. Control Hosp. Epidemiol.33, 322–327 (2012).
Bignardi, G. E. Validation and verification of automated urine particle analysers. J. Clin. Pathol.70, 94–101 (2016). ArticlePubMed Google Scholar
Yusuf, E., Van Herendael, B. & van Schaeren, J. Performance of urinalysis tests and their ability in predicting results of urine cultures: a comparison between automated test strip analyser and flow cytometry in various subpopulations and types of samples. J. Clin. Pathol.http://dx.doi.org/10.1136/jclinpath-2016-204108 (2016).
Lammers, R. L., Gibson, S., Kovacs, D., Sears, W. & Strachan, G. Comparison of test characteristics of urine dipstick and urinalysis at various test cutoff points. Ann. Emerg. Med.38, 505–512 (2001). ArticleCASPubMed Google Scholar
McNair, R. D., MacDonald, S. R., Dooley, S. L. & Peterson, L. R. Evaluation of the centrifuged and Gram-stained smear, urinalysis, and reagent strip testing to detect asymptomatic bacteriuria in obstetric patients. Am. J. Obstet. Gynecol.182, 1076–1079 (2000). ArticleCASPubMed Google Scholar
Stapleton, A. E. et al. Performance of a new rapid immunoassay test kit for point-of-care diagnosis of significant bacteriuria. J. Clin. Microbiol.53, 2805–2809 (2015). ArticleCASPubMedPubMed Central Google Scholar
Rajwa, B. et al. Discovering the unknown: detection of emerging pathogens using a label-free light-scattering system. Cytometry A77, 1103–1112 (2010). ArticlePubMedPubMed Central Google Scholar
Steen, H. B. Light scattering measurement in an arc lamp-based flow cytometer. Cytometry11, 223–230 (1990). ArticleCASPubMed Google Scholar
Fouchet, P., Jayat, C., Hechard, Y., Ratinaud, M. H. & Frelat, G. Recent advances of flow cytometry in fundamental and applied microbiology. Biol. Cell78, 95–109 (1993). ArticleCASPubMed Google Scholar
Broeren, M. A., Bahceci, S., Vader, H. L. & Arents, N. L. Screening for urinary tract infection with the Sysmex UF-1000i urine flow cytometer. J. Clin. Microbiol.49, 1025–1029 (2011). ArticlePubMedPubMed Central Google Scholar
Geerts, N. et al. Urine flow cytometry can rule out urinary tract infection, but cannot identify bacterial morphologies correctly. Clin. Chim. Acta448, 86–90 (2015). ArticleCASPubMed Google Scholar
Inigo, M. et al. Evaluation of the SediMax automated microscopy sediment analyzer and the Sysmex UF-1000i flow cytometer as screening tools to rule out negative urinary tract infections. Clin. Chim. Acta456, 31–35 (2016). ArticleCASPubMed Google Scholar
Inigo, M. et al. Direct identification of urinary tract pathogens from urine samples, combining urine screening methods and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol.54, 988–993 (2016). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. H. et al. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry. J. Microbiol. Methods92, 231–235 (2013). ArticleCASPubMed Google Scholar
Zboromyrska, Y. et al. Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples. Clin. Microbiol. Infect.22, 561.e1–561.e6 (2016). ArticleCAS Google Scholar
Hale, D. C. et al. Rapid screening for bacteriuria by light scatter photometry (Autobac): a collaborative study. J. Clin. Microbiol.13, 147–150 (1981). CASPubMedPubMed Central Google Scholar
Jenkins, R. D., Hale, D. C. & Matsen, J. M. Rapid semiautomated screening and processing of urine specimens. J. Clin. Microbiol.11, 220–225 (1980). CASPubMedPubMed Central Google Scholar
Wada, A. et al. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry. PLoS ONE7, e47093 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gessoni, G., Saccani, G., Valverde, S., Manoni, F. & Caputo, M. Does flow cytometry have a role in preliminary differentiation between urinary tract infections sustained by gram positive and gram negative bacteria? An Italian polycentric study. Clin. Chim. Acta440, 152–156 (2015). ArticleCASPubMed Google Scholar
Mizrahi-Man, O., Davenport, E. R. & Gilad, Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS ONE8, e53608 (2013). ArticleCASPubMedPubMed Central Google Scholar
McArthur, A. G. & Wright, G. D. Bioinformatics of antimicrobial resistance in the age of molecular epidemiology. Curr. Opin. Microbiol.27, 45–50 (2015). ArticlePubMed Google Scholar
Fields, F. R., Lee, S. W. & McConnell, M. J. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem. Pharmacol.http://dx.doi.org/10.1016/j.bcp.2016.12.002 (2016).
Tang, Y. W., Procop, G. W. & Persing, D. H. Molecular diagnostics of infectious diseases. Clin. Chem.43, 2021–2038 (1997). CASPubMed Google Scholar
Veron, L. et al. Rapid urine preparation prior to identification of uropathogens by MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis.34, 1787–1795 (2015). ArticleCASPubMed Google Scholar
Wu, Q., Li, Y., Wang, M., Pan, X. P. & Tang, Y. F. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples. J. Microbiol. Methods83, 175–178 (2010). ArticleCASPubMed Google Scholar
Kothari, A., Morgan, M. & Haake, D. A. Emerging technologies for rapid identification of bloodstream pathogens. Clin. Infect. Dis.59, 272–278 (2014). ArticleCASPubMedPubMed Central Google Scholar
Seng, P. et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis.49, 543–551 (2009). ArticleCASPubMed Google Scholar
Ferreira, L. et al. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol.48, 2110–2115 (2010). ArticleCASPubMedPubMed Central Google Scholar
Burillo, A. et al. Gram-stain plus MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) for a rapid diagnosis of urinary tract infection. PLoS ONE9, e86915 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kohling, H. L. et al. Direct identification of bacteria in urine samples by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and relevance of defensins as interfering factors. J. Med. Microbiol.61, 339–344 (2012). ArticleCASPubMed Google Scholar
Singhal, N., Kumar, M., Kanaujia, P. K. & Virdi, J. S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers Microbiol.6, 791 (2015). Article Google Scholar
Angeletti, S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methodshttp://dx.doi.org/10.1016/j.mimet.2016.09.003 (2016).
Tran, A., Alby, K., Kerr, A., Jones, M. & Gilligan, P. H. Cost savings realized by implementation of routine microbiological identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol.53, 2473–2479 (2015). ArticlePubMedPubMed Central Google Scholar
Armbruster, C. E. & Mobley, H. L. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat. Rev. Microbiol.10, 743–754 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kline, K. A. & Lewis, A. L. Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol. Spectr.http://dx.doi.org/10.1128/microbiolspec.UTI-0012-2012 (2016).
Siegman-Igra, Y. The significance of urine culture with mixed flora. Curr. Opin. Nephrol. Hypertens.3, 656–659 (1994). ArticleCASPubMed Google Scholar
Jung, J. S. et al. Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes. Eur. J. Clin. Microbiol. Infect. Dis.33, 949–955 (2014). ArticleCASPubMed Google Scholar
Moter, A. & Gobel, U. B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods41, 85–112 (2000). ArticleCASPubMed Google Scholar
Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA82, 6955–6959 (1985). ArticleCASPubMedPubMed Central Google Scholar
Ludwig, W. & Schleifer, K. H. Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol. Rev.15, 155–173 (1994). ArticleCASPubMed Google Scholar
Zwirglmaier, K., Ludwig, W. & Schleifer, K. H. Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization — RING-FISH. Mol. Microbiol.51, 89–96 (2004). ArticleCASPubMed Google Scholar
Stender, H., Fiandaca, M., Hyldig-Nielsen, J. J. & Coull, J. PNA for rapid microbiology. J. Microbiol. Methods48, 1–17 (2002). ArticleCASPubMed Google Scholar
Deck, M. K. et al. Multicenter evaluation of the Staphylococcus QuickFISH method for simultaneous identification of Staphylococcus aureus and coagulase-negative staphylococci directly from blood culture bottles in less than 30 minutes. J. Clin. Microbiol.50, 1994–1998 (2012). ArticlePubMedPubMed Central Google Scholar
Deck, M. K. et al. Rapid detection of Enterococcus spp. direct from blood culture bottles using Enterococcus QuickFISH method: a multicenter investigation. Diagn. Microbiol. Infect. Dis.78, 338–342 (2014). ArticleCASPubMed Google Scholar
Sakarikou, C., Parisato, M., Lo Cascio, G. & Fontana, C. Beacon-based (bbFISH®) technology for rapid pathogens identification in blood cultures. BMC Microbiol.14, 99 (2014). ArticleCASPubMedPubMed Central Google Scholar
Oliveira, K., Procop, G. W., Wilson, D., Coull, J. & Stender, H. Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol.40, 247–251 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sogaard, M., Stender, H. & Schonheyder, H. C. Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J. Clin. Microbiol.43, 1947–1949 (2005). ArticleCASPubMedPubMed Central Google Scholar
Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature365, 566–568 (1993). ArticleCASPubMed Google Scholar
Nielsen, P. E. & Egholm, M. An introduction to peptide nucleic acid. Curr. Issues Mol. Biol.1, 89–104 (1999). CASPubMed Google Scholar
Saiki, R. K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science239, 487–491 (1988). ArticleCASPubMed Google Scholar
Lehmann, L. E. et al. Rapid qualitative urinary tract infection pathogen identification by SeptiFast real-time PCR. PLoS ONE6, e17146 (2011). ArticleCASPubMedPubMed Central Google Scholar
Blaschke, A. J. et al. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn. Microbiol. Infect. Dis.74, 349–355 (2012). ArticleCASPubMedPubMed Central Google Scholar
Buss, S. N. et al. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J. Clin. Microbiol.53, 915–925 (2015). ArticlePubMedPubMed Central Google Scholar
Altun, O., Almuhayawi, M., Ullberg, M. & Ozenci, V. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J. Clin. Microbiol.51, 4130–4136 (2013). ArticlePubMedPubMed Central Google Scholar
Salimnia, H. et al. Evaluation of the FilmArray blood culture identification panel: results of a multicenter controlled trial. J. Clin. Microbiol.54, 687–698 (2016). ArticlePubMedPubMed Central Google Scholar
Gaydos, C. A. et al. Performance of the Cepheid CT/NG Xpert rapid PCR test for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol.51, 1666–1672 (2013). ArticlePubMedPubMed Central Google Scholar
Tabrizi, S. N. et al. Analytical evaluation of GeneXpert CT/NG, the first genetic point-of-care assay for simultaneous detection of Neisseria gonorrhoeae and Chlamydia trachomatis. J. Clin. Microbiol.51, 1945–1947 (2013). ArticlePubMedPubMed Central Google Scholar
Buchan, B. W. & Ledeboer, N. A. Emerging technologies for the clinical microbiology laboratory. Clin. Microbiol. Rev.27, 783–822 (2014). ArticleCASPubMedPubMed Central Google Scholar
Nadkarni, M. A., Martin, F. E., Jacques, N. A. & Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology148, 257–266 (2002). ArticleCASPubMed Google Scholar
Fredborg, M. et al. Rapid antimicrobial susceptibility testing of clinical isolates by digital time-lapse microscopy. Eur. J. Clin. Microbiol. Infect. Dis.34, 2385–2394 (2015). ArticleCASPubMedPubMed Central Google Scholar
Price, C. S., Kon, S. E. & Metzger, S. Rapid antibiotic susceptibility phenotypic characterization of Staphylococcus aureus using automated microscopy of small numbers of cells. J. Microbiol. Methods98, 50–58 (2014). ArticleCASPubMed Google Scholar
Douglas, I. S. et al. Rapid automated microscopy for microbiological surveillance of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med.191, 566–573 (2015). ArticlePubMedPubMed Central Google Scholar
Metzger, S., Frobel, R. A. & Dunne, W. M. Jr. Rapid simultaneous identification and quantitation of Staphylococcus aureus and Pseudomonas aeruginosa directly from bronchoalveolar lavage specimens using automated microscopy. Diagn. Microbiol. Infect. Dis.79, 160–165 (2014). ArticlePubMed Google Scholar
Sin, M. L., Mach, K. E., Wong, P. K. & Liao, J. C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev. Mol. Diagn.14, 225–244 (2014). ArticleCASPubMedPubMed Central Google Scholar
Syedmoradi, L. et al. Point of care testing: the impact of nanotechnology. Biosens. Bioelectron.87, 373–387 (2017). ArticleCASPubMed Google Scholar
Rapp, B. E., Gruhl, F. J. & Lange, K. Biosensors with label-free detection designed for diagnostic applications. Anal. Bioanal. Chem.398, 2403–2412 (2010). ArticleCASPubMed Google Scholar
Li, B., Yu, Q. & Duan, Y. Fluorescent labels in biosensors for pathogen detection. Crit. Rev. Biotechnol.35, 82–93 (2015). ArticleCASPubMed Google Scholar
Mach, K. E. et al. A biosensor platform for rapid antimicrobial susceptibility testing directly from clinical samples. J. Urol.185, 148–153 (2011). ArticleCASPubMed Google Scholar
Kadlec, M. W., You, D., Liao, J. C. & Wong, P. K. A. Cell phone-based microphotometric system for rapid antimicrobial susceptibility testing. J. Lab. Autom.19, 258–266 (2014). ArticlePubMed Google Scholar
Smith, G. T. et al. Robust dipstick urinalysis using a low-cost, micro-volume slipping manifold and mobile phone platform. Lab Chip16, 2069–2078 (2016). ArticleCASPubMedPubMed Central Google Scholar
Mach, K. E., Wong, P. K. & Liao, J. C. Biosensor diagnosis of urinary tract infections: a path to better treatment? Trends Pharmacol. Sci.32, 330–336 (2011). ArticleCASPubMedPubMed Central Google Scholar
Roine, A. et al. Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: a proof-of-principle study. PLoS ONE9, e114279 (2014). ArticleCASPubMedPubMed Central Google Scholar
Carey, J. R. et al. Rapid identification of bacteria with a disposable colorimetric sensing array. J. Am. Chem. Soc.133, 7571–7576 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hong, J. I. & Chang, B. Y. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip14, 1725–1732 (2014). ArticleCASPubMed Google Scholar
Lim, S. H. et al. Bacterial culture detection and identification in blood agar plates with an optoelectronic nose. Analyst141, 918–925 (2016). ArticleCASPubMed Google Scholar
Lim, S. H. et al. Colorimetric sensor array allows fast detection and simultaneous identification of sepsis-causing bacteria in spiked blood culture. J. Clin. Microbiol.52, 592–598 (2014). ArticleCASPubMedPubMed Central Google Scholar
Altobelli, E. et al. Integrated biosensor assay for rapid uropathogen identification and phenotypic antimicrobial susceptibility testing. Eur. Urol.http://dx.doi.org/10.1016/j.euf.2015.12.010 (2016).
Mach, K. E. et al. Multiplex pathogen identification for polymicrobial urinary tract infections using biosensor technology: a prospective clinical study. J. Urol.182, 2735–2741 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ouyang, M. et al. An AC electrokinetics facilitated biosensor cassette for rapid pathogen identification. Analyst138, 3660–3666 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mohan, R. et al. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis. PLoS ONE6, e26846 (2011). ArticleCASPubMedPubMed Central Google Scholar
Halford, C. et al. Rapid antimicrobial susceptibility testing by sensitive detection of precursor rRNA using a novel electrochemical biosensing platform. Antimicrob. Agents Chemother.57, 936–943 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mach, K. E. et al. Development of a biosensor-based rapid urine test for detection of urogenital schistosomiasis. PLoS Negl. Trop. Dis.9, e0003845 (2015). ArticleCASPubMedPubMed Central Google Scholar
Sin, M. L., Gao, J., Liao, J. C. & Wong, P. K. System integration — a major step toward lab on a chip. J. Biol. Eng.5, 6 (2011). ArticlePubMedPubMed Central Google Scholar
Pan, Y. et al. Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosens. Bioelectron.26, 649–654 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sin, M. L., Gau, V., Liao, J. C. & Wong, P. K. Electrothermal fluid manipulation of high-conductivity samples for laboratory automation applications. JALA15, 426–432 (2010). CASPubMed Google Scholar
Sin, M. L., Gau, V., Liao, J. C. & Wong, P. K. A universal electrode approach for automated electrochemical molecular analyses. J. Microelectromech. Syst.22, 1126–1132 (2013). ArticleCASPubMedPubMed Central Google Scholar
Garcia Leoni, M. E. & Esclarin De Ruz, A. Management of urinary tract infection in patients with spinal cord injuries. Clin. Microbiol. Infect.9, 780–785 (2003). ArticleCASPubMed Google Scholar
Jayawardena, V. & Midha, M. Significance of bacteriuria in neurogenic bladder. J. Spinal Cord Med.27, 102–105 (2004). ArticlePubMed Google Scholar
Tullus, K. Difficulties in diagnosing urinary tract infections in small children. Pediatr. Nephrol.26, 1923–1926 (2011). ArticlePubMed Google Scholar
Choi, J. et al. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip13, 280–287 (2013). ArticleCASPubMed Google Scholar
Choi, J. et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci. Transl Med.6, 267ra174 (2014). ArticleCASPubMed Google Scholar
Cira, N. J., Ho, J. Y., Dueck, M. E. & Weibel, D. B. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab Chip12, 1052–1059 (2012). ArticleCASPubMed Google Scholar
Chen, C. H. et al. Antimicrobial susceptibility testing using high surface-to-volume ratio microchannels. Anal. Chem.82, 1012–1019 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lu, Y. et al. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading. Anal. Chem.85, 3971–3976 (2013). ArticleCASPubMedPubMed Central Google Scholar
Baraban, L. et al. Millifluidic droplet analyser for microbiology. Lab Chip11, 4057–4062 (2011). ArticleCASPubMed Google Scholar
Boedicker, J. Q., Li, L., Kline, T. R. & Ismagilov, R. F. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip8, 1265–1272 (2008). ArticleCASPubMedPubMed Central Google Scholar
Churski, K. et al. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip12, 1629–1637 (2012). ArticleCASPubMed Google Scholar
Eun, Y. J., Utada, A. S., Copeland, M. F., Takeuchi, S. & Weibel, D. B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem. Biol.6, 260–266 (2011). ArticleCASPubMed Google Scholar
Sinn, I. et al. Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements. Lab Chip11, 2604–2611 (2011). ArticleCASPubMed Google Scholar
Zhang, Y., Shin, D. J. & Wang, T. H. Serial dilution via surface energy trap-assisted magnetic droplet manipulation. Lab Chip13, 4827–4831 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rane, T. D., Zec, H. C. & Wang, T. H. A serial sample loading system: interfacing multiwell plates with microfluidic devices. J. Lab. Autom.17, 370–377 (2012). ArticlePubMedPubMed Central Google Scholar
Rane, T. D., Zec, H. C., Puleo, C., Lee, A. P. & Wang, T. H. Droplet microfluidics for amplification-free genetic detection of single cells. Lab Chip12, 3341–3347 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kaushik, A., Hsieh, K., Chen, L., Shin, D. J. & Wang, T. H. Rapid-assessment of bacterial vitality and antibiotic susceptibility via high-throughput picoliter-droplet single-cell assay. 19th International Conference on Miniaturized Systems for Chemistry and Life Scienceshttp://engineering.jhu.edu/old-thwang/publications/ (2015). Google Scholar
Leung, K. et al. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc. Natl Acad. Sci. USA109, 7665–7670 (2012). ArticlePubMedPubMed Central Google Scholar
Rane, T. D., Zec, H. C. & Wang, T. H. A barcode-free combinatorial screening platform for matrix metalloproteinase screening. Anal. Chem.87, 1950–1956 (2015). ArticleCASPubMed Google Scholar
Zec, H., Rane, T. D. & Wang, T. H. Microfluidic platform for on-demand generation of spatially indexed combinatorial droplets. Lab Chip12, 3055–3062 (2012). ArticleCASPubMedPubMed Central Google Scholar