Chapman, E.R. Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat. Rev. Mol. Cell Biol.3, 498–508 (2002). ArticleCASPubMed Google Scholar
Sutton, R.B., Davletov, B.A., Berghuis, A.M., Sudhof, T.C. & Sprang, S.R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell80, 929–938 (1995). ArticleCASPubMed Google Scholar
Shao, X., Fernandez, I., Sudhof, T.C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry37, 16106–16115 (1998). ArticleCASPubMed Google Scholar
Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 c(2)b-domain. Synaptotagmin 1 as a phospholipid binding machine. Neuron32, 1057–1069 (2001). ArticleCASPubMed Google Scholar
Shao, X., Davletov, B.A., Sutton, R.B., Sudhof, T.C. & Rizo, J. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science273, 248–251 (1996). ArticleCASPubMed Google Scholar
Ubach, J., Zhang, X., Shao, X., Sudhof, T.C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J.17, 3921–3930 (1998). ArticleCASPubMedPubMed Central Google Scholar
Davletov, B.A. & Sudhof, T.C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem.268, 26386–26390 (1993). CASPubMed Google Scholar
Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem.273, 13995–14001 (1998). ArticleCASPubMed Google Scholar
Zhang, X., Rizo, J. & Sudhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry37, 12395–12403 (1998). ArticleCASPubMed Google Scholar
Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature410, 41–49 (2001). ArticleCASPubMed Google Scholar
Rhee, J.S. et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+-affinity of synaptotagmin 1. Proc. Natl. Acad. Sci. USA102, 18664–18669 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shin, O.H., Rizo, J. & Sudhof, T.C. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nat. Neurosci.5, 649–656 (2002). ArticleCASPubMed Google Scholar
Arac, D., Murphy, T. & Rizo, J. Facile detection of protein-protein interactions by one-dimensional NMR spectroscopy. Biochemistry42, 2774–2780 (2003). ArticleCASPubMed Google Scholar
Shin, O.H. et al. Sr2+ binding to the Ca2+ binding site of the synaptotagmin 1 C2B domain triggers fast exocytosis without stimulating SNARE interactions. Neuron37, 99–108 (2003). ArticleCASPubMed Google Scholar
Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell90, 523–535 (1997). ArticleCASPubMed Google Scholar
Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron19, 1087–1094 (1997). ArticleCASPubMed Google Scholar
Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol.5, 765–769 (1998). ArticleCASPubMed Google Scholar
Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature395, 347–353 (1998). ArticleCASPubMed Google Scholar
Hu, K. et al. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature415, 646–650 (2002). ArticleCASPubMed Google Scholar
Kweon, D.H., Kim, C.S. & Shin, Y.K. Regulation of neuronal SNARE assembly by the membrane. Nat. Struct. Biol.10, 440–447 (2003). ArticleCASPubMed Google Scholar
Sorensen, J.B. et al. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc. Natl. Acad. Sci. USA99, 1627–1632 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chen, X., Tang, J., Sudhof, T.C. & Rizo, J. Are neuronal SNARE proteins Ca2+ sensors? J. Mol. Biol.347, 145–158 (2005). ArticleCASPubMed Google Scholar
Rickman, C. et al. Synaptotagmin interaction with the syntaxin/SNAP-25 dimer is mediated by an evolutionarily conserved motif and is sensitive to inositol hexakisphosphate. J. Biol. Chem.279, 12574–12579 (2004). ArticleCASPubMed Google Scholar
Chapman, E.R., Desai, R.C., Davis, A.F. & Tornehl, C.K. Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. J. Biol. Chem.273, 32966–32972 (1998). ArticleCASPubMed Google Scholar
Garcia, R.A., Forde, C.E. & Godwin, H.A. Calcium triggers an intramolecular association of the C2 domains in synaptotagmin. Proc. Natl. Acad. Sci. USA97, 5883–5888 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ubach, J. et al. The C2B domain of synaptotagmin I is a Ca2+-binding module. Biochemistry40, 5854–5860 (2001). ArticleCASPubMed Google Scholar
Mackler, J.M., Drummond, J.A., Loewen, C.A., Robinson, I.M. & Reist, N.E. The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature418, 340–344 (2002). ArticleCASPubMed Google Scholar
Robinson, I.M., Ranjan, R. & Schwarz, T.L. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Nature418, 336–340 (2002). ArticleCASPubMed Google Scholar
Fernandez-Chacon, R. et al. Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1. J. Neurosci.22, 8438–8446 (2002). ArticleCASPubMedPubMed Central Google Scholar
Nishiki, T. & Augustine, G.J. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release. J. Neurosci.24, 8542–8550 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wu, Y. et al. Visualization of synaptotagmin I oligomers assembled onto lipid monolayers. Proc. Natl. Acad. Sci. USA100, 2082–2087 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bai, J., Wang, P. & Chapman, E.R. C2A activates a cryptic Ca(2+)-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc. Natl. Acad. Sci. USA99, 1665–1670 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gerber, S.H., Rizo, J. & Sudhof, T.C. Role of electrostatic and hydrophobic interactions in ca(2+)-dependent phospholipid binding by the c(2)a-domain from synaptotagmin I. Diabetes51 Suppl 1, S12–S18 (2002). ArticleCASPubMed Google Scholar
Rufener, E., Frazier, A.A., Wieser, C.M., Hinderliter, A. & Cafiso, D.S. Membrane-bound orientation and position of the synaptotagmin C2B domain determined by site-directed spin labeling. Biochemistry44, 18–28 (2005). ArticleCASPubMed Google Scholar
Frazier, A.A., Roller, C.R., Havelka, J.J., Hinderliter, A. & Cafiso, D.S. Membrane-bound orientation and position of the synaptotagmin I C2A domain by site-directed spin labeling. Biochemistry42, 96–105 (2003). ArticleCASPubMed Google Scholar
Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell73, 1101–1115 (1993). ArticleCASPubMed Google Scholar
Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem.218, 1–13 (1994). ArticleCASPubMed Google Scholar
Bai, J., Tucker, W.C. & Chapman, E.R. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol.11, 36–44 (2004). ArticleCASPubMed Google Scholar
Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev.80, 717–766 (2000). ArticleCASPubMed Google Scholar
Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science304, 435–438 (2004). ArticleCASPubMed Google Scholar
Chen, X. et al. SNARE mediated lipid mixing depends on the physical state of the vesicles Biophys. J published online 16 December 2005 (10.1529/biophysj.105.071415).
Chernomordik, L.V., Melikyan, G.B. & Chizmadzhev, Y.A. Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim. Biophys. Acta906, 309–352 (1987). ArticleCASPubMed Google Scholar
Hartmann, W. & Galla, H.J. Binding of polylysine to charged bilayer membranes: molecular organization of a lipid.peptide complex. Biochim. Biophys. Acta509, 474–490 (1978). ArticleCASPubMed Google Scholar
Borden, C.R., Stevens, C.F., Sullivan, J.M. & Zhu, Y. Synaptotagmin mutants Y311N and K326/327A alter the calcium dependence of neurotransmission. Mol. Cell. Neurosci.29, 462–470 (2005). ArticleCASPubMed Google Scholar
Ludtke, S.J., Jakana, J., Song, J.L., Chuang, D.T. & Chiu, W. A 11.5 A single particle reconstruction of GroEL using EMAN. J. Mol. Biol.314, 253–262 (2001). ArticleCASPubMed Google Scholar
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol.116, 71–76 (1996). ArticleCASPubMed Google Scholar
Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association—insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet.11, 281–296 (1991). ArticleCASPubMed Google Scholar