Structure and mechanism of the RNA polymerase II transcription machinery (original) (raw)
Hampsey, M. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev.62, 465– 503 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lee, T.I. & Young, R.A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet.34, 77– 137 (2000). ArticleCASPubMed Google Scholar
Woychik, N.A. & Hampsey, M. The RNA polymerase II machinery: structure illuminates function. Cell108, 453– 463 (2002). ArticleCASPubMed Google Scholar
Borukhov, S. & Nudler, E. RNA polymerase holoenzyme: structure, function and biological implications. Curr. Opin. Microbiol.6, 93– 100 (2003). ArticleCASPubMed Google Scholar
Chen, H.T. & Hahn, S. Binding of TFIIB to RNA polymerase II: mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex. Mol. Cell12, 437– 447 (2003). ArticleCASPubMed Google Scholar
Chung, W.H. et al. RNA Polymerase II/TFIIF Structure and Conserved Organization of the Initiation Complex. Mol. Cell12, 1003– 1013 (2003). ArticleCASPubMed Google Scholar
Bushnell, D.A., Westover, K.D., Davis, R.E. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Å. Science303, 983– 988 (2004). ArticleCASPubMed Google Scholar
Bell, S.D. & Jackson, S.P. Transcription in Archaea. Cold Spring Harb. Symp. Quant. Biol.63, 41– 51 (1998). ArticleCASPubMed Google Scholar
Ebright, R.H. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol.304, 687– 698 (2000). ArticleCASPubMed Google Scholar
Schramm, L. & Hernandez, N. Recruitment of RNA polymerase III to its target promoters. Genes Dev.16, 2593– 2620 (2002). ArticleCASPubMed Google Scholar
Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev.17, 1691– 1702 (2003). ArticleCASPubMed Google Scholar
Ptashne, M. & Gann, A. Genes and Signals (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2002). Google Scholar
Cosma, M.P. Ordered recruitment: gene-specific mechanism of transcription activation. Mol. Cell10, 227– 236 (2002). ArticleCASPubMed Google Scholar
Wang, W., Carey, M. & Gralla, J.D. Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science255, 450– 453 (1992). ArticleCASPubMed Google Scholar
Luse, D.S. & Jacob, G.A. Abortive initiation by RNA polymerase II in vitro at the adenovirus 2 major late promoter. J. Biol. Chem.262, 14990– 14997 (1987). ArticleCASPubMed Google Scholar
Holstege, F.C.P., Fiedler, U. & Timmers, H.T.M. Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J.16, 7468– 7480 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bentley, D. The mRNA assembly line: transcription and processing machines in the same factory. Curr. Opin. Cell Biol.14, 336– 342 (2002). ArticleCASPubMed Google Scholar
Yudkovsky, N., Ranish, J.A. & Hahn, S. A transcription reinitiation intermediate that is stabilized by activator. Nature408, 225– 229 (2000). ArticleCASPubMed Google Scholar
Smale, S.T. & Kadonaga, J.T. The RNA polymerase II core promoter. Annu. Rev. Biochem.72, 449– 479 (2003). ArticleCASPubMed Google Scholar
Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature365, 512– 520 (1993). ArticleCASPubMed Google Scholar
Kim, J.L., Nikolov, D.B. & Burley, S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature365, 520– 527 (1993). ArticleCASPubMed Google Scholar
Cox, J.M. et al. Bidirectional binding of the TATA box binding protein to the TATA box. Proc. Natl. Acad. Sci. USA94, 13475– 13480 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lagrange, T., Kapanidis, A.N., Tang, H., Reinberg, D. & Ebright, R.H. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev.12, 34– 44 (1998). ArticleCASPubMedPubMed Central Google Scholar
Qureshi, S.A. & Jackson, S.P. Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength. Mol. Cell1, 389– 400 (1998). ArticleCASPubMed Google Scholar
Bell, S.D., Kosa, P.L., Sigler, P.B. & Jackson, S.P. Orientation of the transcription preinitiation complex in archaea. Proc. Natl. Acad. Sci. USA96, 13662– 13667 (1999). ArticleCASPubMedPubMed Central Google Scholar
Littlefield, O., Korkhin, Y. & Sigler, P.B. The structural basis for the oriented assembly of a TBP/TFB/promoter complex. Proc. Natl. Acad. Sci. USA96, 13668– 13673 (1999). ArticleCASPubMedPubMed Central Google Scholar
Chalkley, G.E. & Verrijzer, C.P. DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250–TAF(II)150 complex recognizes the initiator. EMBO J.18, 4835– 4845 (1999). ArticleCASPubMedPubMed Central Google Scholar
Oelgeschlager, T., Chiang, C.-M. & Roeder, R.G. Topology and reorganization of a human TFIID-promoter complex. Nature382, 735– 738 (1996). ArticleCASPubMed Google Scholar
Burke, T.W. & Kadonaga, J.T. The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes Dev.11, 3020– 3031 (1997). ArticleCASPubMedPubMed Central Google Scholar
Butler, J.E. & Kadonaga, J.T. Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes Dev.15, 2515– 2519 (2001). ArticleCASPubMedPubMed Central Google Scholar
Ohler, U., Liao, G.C., Niemann, H. & Rubin, G.M. Computational analysis of core promoters in the Drosophila genome. Genome Biol.3, 0087.1– 0087.12 (2002). Article Google Scholar
Patikoglou, G.A. et al. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev.13, 3217– 3230 (1999). ArticleCASPubMedPubMed Central Google Scholar
Wobbe, C.R. & Struhl, K. Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol. Cell. Biol.10, 3859– 3867 (1990). CASPubMedPubMed Central Google Scholar
Ranish, J.A., Yudkovsky, N. & Hahn, S. Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev.13, 49– 63 (1999). ArticleCASPubMedPubMed Central Google Scholar
Martinez, E. et al. Core promoter-specific function of a mutant transcription factor TFIID defective in TATA-box binding. Proc. Natl. Acad. Sci. USA92, 11864– 11868 (1995). ArticleCASPubMedPubMed Central Google Scholar
Hochheimer, A. & Tjian, R. Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev.17, 1309– 1320 (2003). ArticleCASPubMed Google Scholar
Davidson, I. The genetics of TBP and TBP-related factors. Trends Biochem. Sci.28, 391– 398 (2003). ArticleCASPubMed Google Scholar
Holmes, M.C. & Tjian, R. Promoter-selective properties of the TBP-related factor TRF1. Science288, 867– 870 (2000). ArticleCASPubMed Google Scholar
Takada, S., Lis, J.T., Zhou, S. & Tjian, R. A TRF1:BRF complex directs Drosophila RNA polymerase III transcription. Cell101, 459– 469 (2000). ArticleCASPubMed Google Scholar
Nikolov, D.B. et al. Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature377, 119– 128 (1995). ArticleCASPubMed Google Scholar
Geiger, J.H., Hahn, S., Lee, S. & Sigler, P.B. Crystal structure of the yeast TFIIA/TBP/DNA complex. Science272, 830– 836 (1996). ArticleCASPubMed Google Scholar
Tan, S., Hunziker, Y., Sargent, D.F. & Richmond, T.J. Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature381, 127– 134 (1996). ArticleCASPubMed Google Scholar
Weideman, C.A. et al. Dynamic interplay of TFIIA, TBP, and TATA DNA. J. Mol. Biol.271, 61– 75 (1997). ArticleCASPubMed Google Scholar
Kokubo, T., Swanson, M.J., Nishikawa, J.I., Hinnebusch, A.G. & Nakatani, Y. The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol. Cell. Biol.18, 1003– 1012 (1998). ArticleCASPubMedPubMed Central Google Scholar
Liu, D. et al. Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell94, 573– 583 (1998). ArticleCASPubMed Google Scholar
Sanders, S.L., Garbett, K.A. & Weil, P.A. Molecular characterization of Saccharomyces cerevisiae TFIID. Mol. Cell. Biol.22, 6000– 6013 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chi, T., Lieberman, P., Ellwood, K. & Carey, M. A general mechanism for transcriptional synergy by eukaryotic activators. Nature377, 254– 257 (1995). ArticleCASPubMed Google Scholar
Pardee, T.S., Bangur, C.S. & Ponticelli, A.S. The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J. Biol. Chem.273, 17859– 17864 (1998). ArticleCASPubMed Google Scholar
Hahn, S. & Roberts, S. The zinc ribbon domains of the general transcription factors TFIIB and Brf: conserved functional surfaces but different roles in transcription initiation. Genes Dev.14, 719– 730 (2000). ArticleCASPubMedPubMed Central Google Scholar
Albright, S.R. & Tjian, R. TAFs revisited: more data reveal new twists and confirm old ideas. Gene242, 1– 13 (2000). ArticleCASPubMed Google Scholar
Green, M.R. TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends Biochem. Sci.25, 59– 63 (2000). ArticleCASPubMed Google Scholar
Tora, L. A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription. Genes Dev.16, 673– 675 (2002). ArticleCASPubMed Google Scholar
Chen, J.-L., Attardi, L.D., Verrijzer, C.P., Yokomori, K. & Tjian, R. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell79, 93– 105 (1994). ArticleCASPubMed Google Scholar
Thut, C.J., Chen, J.L., Klemm, R. & Tjian, R. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science267, 100– 104 (1995). ArticleCASPubMed Google Scholar
Wassarman, D.A. & Sauer, F. TAF(II)250: a transcription toolbox. J. Cell Sci.114, 2895– 2902 (2001). ArticleCASPubMed Google Scholar
Andel, F. 3rd, Ladurner, A.G., Inouye, C., Tjian, R. & Nogales, E. Three-dimensional structure of the human TFIID-IIA-IIB complex. Science286, 2153– 2156 (1999). ArticleCASPubMed Google Scholar
Brand, M., Leurent, C., Mallouh, V., Tora, L. & Schultz, P. Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science286, 2151– 2153 (1999). ArticleCASPubMed Google Scholar
Xie, X. et al. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature380, 316– 322 (1996). ArticleCASPubMed Google Scholar
Werten, S. et al. Crystal structure of a subcomplex of human transcription factor TFIID formed by TATA binding protein-associated factors hTAF4 (hTAF(II)135) and hTAF12 (hTAF(II)20). J. Biol. Chem.277, 45502– 45509 (2002). ArticleCASPubMed Google Scholar
Gangloff, Y.G., Romier, C., Thuault, S., Werten, S. & Davidson, I. The histone fold is a key structural motif of transcription factor TFIID. Trends Biochem. Sci.26, 250– 257 (2001). ArticleCASPubMed Google Scholar
Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.9Å resolution. Nature389, 251– 260 (1997). ArticleCASPubMed Google Scholar
Freiman, R.N. et al. Requirement of tissue-selective TBP-associated factor TAFII105 in ovarian development. Science293, 2084– 2087 (2001). ArticleCASPubMed Google Scholar
Hiller, M.A., Lin, T.Y., Wood, C. & Fuller, M.T. Developmental regulation of transcription by a tissue-specific TAF homolog. Genes Dev.15, 1021– 1030 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shen, W.C. et al. Systematic analysis of essential yeast TAFs in genome-wide transcription and preinitiation complex assembly. EMBO J.22, 3395– 3402 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kuras, L., Kosa, P., Mencia, M. & Struhl, K. TAF-containing and TAF-independent forms of transcriptionally active TBP in vivo. Science288, 1244– 1248 (2000). ArticleCASPubMed Google Scholar
Li, X.Y., Bhaumik, S.R. & Green, M.R. Distinct classes of yeast promoters revealed by differential TAF recruitment. Science288, 1242– 1244 (2000). ArticleCASPubMed Google Scholar
Lee, T.I. et al. Redundant roles for the TFIID and SAGA complexes in global transcription. Nature405, 701– 704 (2000). ArticleCASPubMed Google Scholar
Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell98, 811– 824 (1999). ArticleCASPubMed Google Scholar
Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science288, 640– 649 (2000). ArticleCASPubMed Google Scholar
Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: RNA polymerase II at 2.8 Å resolution. Science292, 1863– 1876 (2001). ArticleCASPubMed Google Scholar
Opalka, N. et al. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell114, 335– 345 (2003). ArticleCASPubMed Google Scholar
Mekler, V. et al. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell108, 599– 614 (2002). ArticleCASPubMed Google Scholar
Murakami, K.S., Masuda, S. & Darst, S.A. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 Å resolution. Science296, 1280– 1284 (2002). ArticleCASPubMed Google Scholar
Vassylyev, D.G. et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature417, 712– 719 (2002). ArticleCASPubMed Google Scholar
Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O. & Darst, S.A. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science296, 1285– 1290 (2002). ArticleCASPubMed Google Scholar
Armache, K.J., Kettenberger, H. & Cramer, P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc. Natl. Acad. Sci. USA100, 6964– 6968 (2003). ArticleCASPubMedPubMed Central Google Scholar
Bushnell, D.A. & Kornberg, R.D. Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: implications for the initiation of transcription. Proc. Natl. Acad. Sci. USA100, 6969– 6973 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science292, 1876– 1882 (2001). ArticleCASPubMed Google Scholar
Westover, K.D., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science303, 1014– 1016 (2004). ArticleCASPubMed Google Scholar
Kettenberger, H., Armache, K.J. & Cramer, P. Architecture of the RNA polymerase II–TFIIS complex and implications for mRNA cleavage. Cell114, 347– 357 (2003). ArticleCASPubMed Google Scholar
Davis, J.A., Takagi, Y., Kornberg, R.D. & Asturias, F.A. Structure of the yeast RNA polymerase II holoenzyme: mediator conformation and polymerase interaction. Mol. Cell10, 409– 415 (2002). ArticleCASPubMed Google Scholar
Liu, Y. et al. Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol. Cell. Biol.24, 1721– 1735 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ahn, S.H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell13, 67– 76 (2004). ArticleCASPubMed Google Scholar
Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol.7, 639– 643 (2000). ArticleCASPubMed Google Scholar
Fabrega, C., Shen, V., Shuman, S. & Lima, C.D. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol. Cell11, 1549– 1561 (2003). ArticleCASPubMed Google Scholar
Hope, I.A., Mahadevan, S. & Struhl, K. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature333, 635– 640 (1988). ArticleCASPubMed Google Scholar
Cress, W.D. & Triezenberg, S.J. Critical structural elements of the VP16 transcriptional activation domain. Science251, 87– 90 (1991). ArticleCASPubMed Google Scholar
Jackson, B.M., Drysdale, C.M., Natarajan, K. & Hinnebusch, A.G. Identification of seven hydrophobic clusters in GCN4 making redundant contributions to transcriptional activation. Mol. Cell. Biol.16, 5557– 5571 (1996). ArticleCASPubMedPubMed Central Google Scholar
Malik, S. & Roeder, R.G. Transcriptional regulation through mediator-like coactivators in yeast and metazoan cells. Trends Biochem. Sci.25, 277– 283 (2000). ArticleCASPubMed Google Scholar
Boube, M., Joulia, L., Cribbs, D.L. & Bourbon, H.M. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell110, 143– 151 (2002). ArticleCASPubMed Google Scholar
Cosma, M.P., Tanaka, T. & Nasmyth, K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell97, 299– 311 (1999). ArticleCASPubMed Google Scholar
Rani, P.G., Ranish, J.A. & Hahn, S. RNA polymerase II (Pol II)-TFIIF and Pol II-mediator complexes: the major stable Pol II complexes and their activity in transcription initiation and reinitiation. Mol. Cell. Biol.24, 1709– 1720 (2004). ArticleCASPubMedPubMed Central Google Scholar
Kang, J.S. et al. The structural and functional organization of the yeast mediator complex. J. Biol. Chem.276, 42003– 42010 (2001). ArticleCASPubMed Google Scholar
Forget, D. et al. RAP74 induces promoter contacts by RNA polymerase II upstream and downstream of a DNA bend centered on the TATA box. Proc. Natl. Acad. Sci. USA94, 7150– 7155 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kim, T.-K. et al. Trajectory of DNA in the RNA polymerase II transcription preinitiation complex. Proc. Natl. Acad. Sci. USA94, 12268– 12273 (1997). ArticleCASPubMedPubMed Central Google Scholar
Kim, T.K., Ebright, R.H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science288, 1418– 1422 (2000). ArticleCASPubMed Google Scholar
Forget, D., Langelier, M.-F., Therien, C., Trinh, V. & Coulombe, B. Photo-cross-linking of a purified preinitiation complex reveals central roles for the RNA polymerase II mobile clamp and TFIIE in initiation mechanisms. Mol. Cell. Biol.24, 1122– 1131 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bartlett, M.S., Thomm, M. & Geiduschek, E.P. Topography of the euryarchaeal transcription initiation complex. J. Biol. Chem.279, 5894– 5903 (2004). ArticleCASPubMed Google Scholar
Renfrow, M.B. et al. Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex. J. Biol. Chem.279, 2825– 2831 (2004). ArticleCASPubMed Google Scholar
Gaiser, F., Tan, S. & Richmond, T.J. Novel dimerization fold of RAP30/RAP74 in human TFIIF at 1.7 Å resolution. J. Mol. Biol.302, 1119– 1127 (2000). ArticleCASPubMed Google Scholar
Kamada, K., Roeder, R.G. & Burley, S.K. Molecular mechanism of recruitment of TFIIF-associating RNA polymerase C-terminal domain phosphatase (FCP1) by transcription factor IIF. Proc. Natl. Acad. Sci. USA100, 2296– 2299 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, B.D. et al. NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II carboxyl-terminal domain phosphatase FCP1. Proc. Natl. Acad. Sci. USA100, 5688– 5693 (2003). ArticleCASPubMedPubMed Central Google Scholar
Sopta, M., Burton, Z.F. & Greenblatt, J. Structure and associated DNA-helicase activity of a general transcription initiation factor that binds to RNA polymerase II. Nature341, 410– 414 (1989). ArticleCASPubMed Google Scholar
Bushnell, D.A., Bamdad, C. & Kornberg, R.D. A minimal set of RNA Pol II transcription protein interactions. J. Biol. Chem.271, 20170– 20174 (1996). ArticleCASPubMed Google Scholar
Ohkuma, Y. Multiple functions of general transcription factors TFIIE and TFIIH in transcription: possible points of regulation by trans-acting factors. J. Biochem.122, 481– 489 (1997). ArticleCASPubMed Google Scholar
Sayre, M.H., Tschochner, H. & Kornberg, R.D. Purification and properties of S. cerevisiae RNA polymerase II general initiation factor a. J. Biol. Chem.267, 23383– 23387 (1992). ArticleCASPubMed Google Scholar
Leuther, K.K., Bushnell, D.A. & Kornberg, R.D. Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation. Cell85, 773– 779 (1996). ArticleCASPubMed Google Scholar
Okuda, M. et al. Structure of the central core domain of TFIIEβ with a novel double-stranded DNA-binding surface. EMBO J.19, 1346– 1356 (2000). ArticleCASPubMedPubMed Central Google Scholar
Coin, F. & Egly, J.M. Ten years of TFIIH. Cold Spring Harb. Symp. Quant. Biol.63, 105– 110 (1998). ArticleCASPubMed Google Scholar
Takagi, Y. et al. Revised subunit structure of yeast TFIIH and reconciliation with human TFIIH. J. Biol. Chem.278, 43897– 43900 (2003). ArticleCASPubMed Google Scholar
Dubaele, S. et al. Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol. Cell11, 1635– 1646 (2003). ArticleCASPubMed Google Scholar
Chang, W.H. & Kornberg, R.D. Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell102, 609– 613 (2000). ArticleCASPubMed Google Scholar
Caruthers, J.M. & McKay, D.B. Helicase structure and mechanism. Curr. Opin. Struct. Biol.12, 123– 133 (2002). ArticleCASPubMed Google Scholar
Choi, W.S., Yan, M., Nusinow, D. & Gralla, J.D. In vitro transcription and start site selection in Schizosaccharomyces pombe. J. Mol. Biol.319, 1005– 1013 (2002). ArticleCASPubMed Google Scholar
Hekmatpanah, D.S. & Young, R.A. Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection. Mol. Cell. Biol.11, 5781– 5791 (1991). CASPubMedPubMed Central Google Scholar
Berroteran, R.W., Ware, D.E. & Hampsey, M. The sua8 suppressors of S. cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations. Mol. Cell. Biol.14, 226– 237 (1994). CASPubMedPubMed Central Google Scholar
Pinto, I., Ware, D.E. & Hampsey, M. The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell68, 977– 988 (1992). ArticleCASPubMed Google Scholar
Faitar, S.L., Brodie, S.A. & Ponticelli, A.S. Promoter-specific shifts in transcription initiation conferred by yeast TFIIB mutations are determined by the sequence in the immediate vicinity of the start sites. Mol. Cell. Biol.21, 4427– 4440 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sun, Z.W., Tessmer, A. & Hampsey, M. Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae. Nucleic Acids Res.24, 2560– 2566 (1996). ArticleCASPubMedPubMed Central Google Scholar
Giardina, C. & Lis, J.T. DNA melting on yeast RNA polymerase II promoters. Science261, 759– 762 (1993). ArticleCASPubMed Google Scholar
Chen, H.T., Legault, P., Glushka, J., Omichinski, J.G. & Scott, R.A. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci.9, 1743– 1752 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bushnell, D.A., Cramer, P. & Kornberg, R.D. Structural basis of transcription: α-amanitin-RNA polymerase II cocrystal at 2.8 Å resolution. Proc. Natl. Acad. Sci. USA99, 1218– 1222 (2002). ArticleCASPubMedPubMed Central Google Scholar
Douziech, M. et al. Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking. Mol. Cell. Biol.20, 8168– 8177 (2000). ArticleCASPubMedPubMed Central Google Scholar