Interaction of tumor cells and lymphatic vessels in cancer progression (original) (raw)
Garcia M, Jemal A, Ward EM, Center MM, Hao Y, Sieger RL et al. Global Cancer Facts & Figures 2007. American Cancer Society: Atlanta, GA, 2007. Google Scholar
Siegel R, Ward E, Brawley O, Jemal A . Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011; 61: 212–236. PubMed Google Scholar
Ferlay J, Parkin DM, Steliarova-Foucher E . Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010; 46: 765–781. CASPubMed Google Scholar
Wigle JT, Oliver G . Prox1 function is required for the development of the murine lymphatic system. Cell 1999; 98: 769–778. CASPubMed Google Scholar
Yoshimatsu Y, Yamazaki T, Mihira H, Itoh T, Suehiro J, Yuki K et al. Ets family members induce lymphangiogenesis through physical and functional interaction with Prox1. J Cell Sci 2011; 124: 2753–2762. CASPubMed Google Scholar
Bos FL, Caunt M, Peterson-Maduro J, Planas-Paz L, Kowalski J, Karpanen T et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 2011; 109: 486–491. CASPubMed Google Scholar
Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004; 5: 74–80. CASPubMed Google Scholar
Kang J, Yoo J, Lee S, Tang W, Aguilar B, Ramu S et al. An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. Blood 2010; 116: 140–150. CASPubMedPubMed Central Google Scholar
Chen L, Mupo A, Huynh T, Cioffi S, Woods M, Jin C et al. Tbx1 regulates Vegfr3 and is required for lymphatic vessel development. J Cell Biol 2010; 189: 417–424. CASPubMedPubMed Central Google Scholar
Norrmen C, Ivanov KI, Cheng J, Zangger N, Delorenzi M, Jaquet M et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 2009; 185: 439–457. CASPubMedPubMed Central Google Scholar
Wick N, Haluza D, Gurnhofer E, Raab I, Kasimir MT, Prinz M et al. Lymphatic precollectors contain a novel, specialized subpopulation of podoplanin low, CCL27-expressing lymphatic endothelial cells. Am J Pathol 2008; 173: 1202–1209. CASPubMedPubMed Central Google Scholar
Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 2003; 22: 3546–3556. CASPubMedPubMed Central Google Scholar
Bertozzi CC, Hess PR, Kahn ML . Platelets: covert regulators of lymphatic development [Review]. Arterioscler Thromb Vasc Biol 2010; 30: 2368–2371. CASPubMedPubMed Central Google Scholar
Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116: 661–670. CASPubMedPubMed Central Google Scholar
Cueni LN, Chen L, Zhang H, Marino D, Huggenberger R, Alitalo A et al. Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin. Blood 2010; 116: 4376–4384. PubMedPubMed Central Google Scholar
Jackson DG . Immunological functions of hyaluronan and its receptors in the lymphatics [Review]. Immunol Rev 2009; 230: 216–231. CASPubMed Google Scholar
Oliver G, Srinivasan RS . Lymphatic vasculature development: current concepts [Review]. Ann NY Acad Sci 2008; 1131: 75–81. CASPubMed Google Scholar
Marino D, Dabouras V, Brandli AW, Detmar M . A role for all-_trans_-retinoic acid in the early steps of lymphatic vasculature development. J Vasc Res 2011; 48: 236–251. CASPubMed Google Scholar
Pflicke H, Sixt M . Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med 2009; 206: 2925–2935. CASPubMedPubMed Central Google Scholar
Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002; 296: 1883–1886. ArticleCASPubMed Google Scholar
Schledzewski K, Falkowski M, Moldenhauer G, Metharom P, Kzhyshkowska J, Ganss R et al. Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol 2006; 209: 67–77. CASPubMed Google Scholar
Cho CH, Koh YJ, Han J, Sung HK, Jong Lee H, Morisada T et al. Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ Res 2007; 100: e47–e57. CASPubMed Google Scholar
Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS . Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes 2010; 59: 1171–1181. CASPubMedPubMed Central Google Scholar
Mouta Carreira C, Nasser SM, di Tomaso E, Padera TP, Boucher Y, Tomarev SI et al. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res 2001; 61: 8079–8084. CASPubMed Google Scholar
Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995; 92: 3566–3570. CASPubMedPubMed Central Google Scholar
Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P et al. Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 2007; 67: 593–599. CASPubMed Google Scholar
Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 2008; 454: 656–660. CASPubMed Google Scholar
Haiko P, Makinen T, Keskitalo S, Taipale J, Karkkainen MJ, Baldwin ME et al. Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos. Mol Cell Biol 2008; 28: 4843–4850. CASPubMedPubMed Central Google Scholar
Zhang L, Zhou F, Han W, Shen B, Luo J, Shibuya M et al. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res 2010; 20: 1319–1331. CASPubMed Google Scholar
Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 2001; 98: 12677–12682. CASPubMedPubMed Central Google Scholar
Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282: 946–949. CASPubMed Google Scholar
Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 2011; 13: 1202–1213. CASPubMedPubMed Central Google Scholar
Galvagni F, Pennacchini S, Salameh A, Rocchigiani M, Neri F, Orlandini M et al. Endothelial cell adhesion to the extracellular matrix induces c-Src-dependent VEGFR-3 phosphorylation without the activation of the receptor intrinsic kinase activity. Circ Res 2010; 106: 1839–1848. CASPubMed Google Scholar
Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 2010; 29: 1377–1388. CASPubMedPubMed Central Google Scholar
Harris NC, Paavonen K, Davydova N, Roufail S, Sato T, Zhang YF et al. Proteolytic processing of vascular endothelial growth factor-D is essential for its capacity to promote the growth and spread of cancer. FASEB J 2011; 25: 2615–2625. CASPubMed Google Scholar
Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K et al. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol 2001; 159: 893–903. CASPubMedPubMed Central Google Scholar
Saaristo A, Tammela T, Farkkila A, Karkkainen M, Suominen E, Yla-Herttuala S et al. Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol 2006; 169: 1080–1087. CASPubMedPubMed Central Google Scholar
Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002; 161: 947–956. CASPubMedPubMed Central Google Scholar
Gordon EJ, Rao S, Pollard JW, Nutt SL, Lang RA, Harvey NL . Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development 2010; 137: 3899–3910. CASPubMedPubMed Central Google Scholar
Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 2010; 116: 829–840. CASPubMedPubMed Central Google Scholar
Kim KE, Koh YJ, Jeon BH, Jang C, Han J, Kataru RP et al. Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am J Pathol 2009; 175: 1733–1745. CASPubMedPubMed Central Google Scholar
Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002; 196: 1497–1506. CASPubMedPubMed Central Google Scholar
Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M . VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005; 201: 1089–1099. CASPubMedPubMed Central Google Scholar
Halin C, Tobler NE, Vigl B, Brown LF, Detmar M . VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 2007; 110: 3158–3167. CASPubMedPubMed Central Google Scholar
Hong YK, Lange-Asschenfeldt B, Velasco P, Hirakawa S, Kunstfeld R, Brown LF et al. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 2004; 18: 1111–1113. CASPubMed Google Scholar
Kunstfeld R, Hirakawa S, Hong YK, Schacht V, Lange-Asschenfeldt B, Velasco P et al. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 2004; 104: 1048–1057. CASPubMed Google Scholar
Wirzenius M, Tammela T, Uutela M, He Y, Odorisio T, Zambruno G et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med 2007; 204: 1431–1440. CASPubMedPubMed Central Google Scholar
Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 2005; 115: 247–257. CASPubMedPubMed Central Google Scholar
Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001; 20: 1223–1231. CASPubMedPubMed Central Google Scholar
Zheng W, Tammela T, Yamamoto M, Anisimov A, Holopainen T, Kaijalainen S et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood 2011; 118: 1154–1162. CASPubMed Google Scholar
Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004; 113: 1040–1050. CASPubMedPubMed Central Google Scholar
Murakami M, Zheng Y, Hirashima M, Suda T, Morita Y, Ooehara J et al. VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Biol 2008; 28: 658–664. CASPubMed Google Scholar
Leppanen VM, Jeltsch M, Anisimov A, Tvorogov D, Aho K, Kalkkinen N et al. Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Blood 2011; 117: 1507–1515. CASPubMed Google Scholar
Anisimov A, Alitalo A, Korpisalo P, Soronen J, Kaijalainen S, Leppanen VM et al. Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ Res 2009; 104: 1302–1312. CASPubMedPubMed Central Google Scholar
Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 2003; 92: 1098–1106. CASPubMed Google Scholar
Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol 2010; 188: 115–130. CASPubMedPubMed Central Google Scholar
Caunt M, Mak J, Liang WC, Stawicki S, Pan Q, Tong RK et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 2008; 13: 331–342. CASPubMed Google Scholar
Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G . Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 2000; 275: 18040–18045. CASPubMed Google Scholar
Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002; 129: 4797–4806. CASPubMed Google Scholar
Neufeld G, Kessler O . The semaphorins: versatile regulators of tumour progression and tumour angiogenesis [Review]. Nat Rev Cancer 2008; 8: 632–645. CASPubMed Google Scholar
Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M . Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 2005; 24: 2885–2895. CASPubMedPubMed Central Google Scholar
Chang LK, Garcia-Cardena G, Farnebo F, Fannon M, Chen EJ, Butterfield C et al. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 2004; 101: 11658–11663. CASPubMedPubMed Central Google Scholar
Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Galter D et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004; 6: 333–345. CASPubMed Google Scholar
Leong SP, Nakakura EK, Pollock R, Choti MA, Morton DL, Henner WD et al. Unique patterns of metastases in common and rare types of malignancy [Review]. J Surg Oncol 2011; 103: 607–614. PubMed Google Scholar
Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL, Pytowski B et al. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 2006; 66: 8065–8075. CASPubMed Google Scholar
Catalano O, Caraco C, Mozzillo N, Siani A . Locoregional spread of cutaneous melanoma: sonography findings [Review]. Am J Roentgenol 2010; 194: 735–745. Google Scholar
van Akkooi AC, de Wilt JH, Verhoef C, Schmitz PI, van Geel AN, Eggermont AM et al. Clinical relevance of melanoma micrometastases (<0.1 mm) in sentinel nodes: are these nodes to be considered negative? Ann Oncol 2006; 17: 1578–1585. CASPubMed Google Scholar
Moussai D, Mitsui H, Pettersen JS, Pierson KC, Shah KR, Suarez-Farinas M et al. The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C. J Invest Dermatol 2011; 131: 229–236. CASPubMed Google Scholar
Yang H, Kim C, Kim MJ, Schwendener RA, Alitalo K, Heston W et al. Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer. Mol Cancer 2011; 10: 36. PubMedPubMed Central Google Scholar
Ran S, Volk L, Hall K, Flister MJ . Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology 2010; 17: 229–251. PubMed Google Scholar
Rinderknecht M, Detmar M . Tumor lymphangiogenesis and melanoma metastasis [Review]. J Cell Physiol 2008; 216: 347–354. CASPubMed Google Scholar
Thiele W, Sleeman JP . Tumor-induced lymphangiogenesis: a target for cancer therapy? [Review]. J Biotechnol 2006; 124: 224–241. CASPubMed Google Scholar
Rinderknecht M, Detmar M . Molecular mechanisms of lymph node metastasisi. In: Stacker SA, Achen MG (eds). Lymphangiogenesis in Cancer Metastasis. Springer Science+Business Media BV, 2009. Google Scholar
He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 2005; 65: 4739–4746. CASPubMed Google Scholar
Burton JB, Priceman SJ, Sung JL, Brakenhielm E, An DS, Pytowski B et al. Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res 2008; 68: 7828–7837. CASPubMedPubMed Central Google Scholar
Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7: 192–198. CASPubMed Google Scholar
Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20: 672–682. CASPubMedPubMed Central Google Scholar
Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001; 61: 1786–1790. CASPubMed Google Scholar
Tammela T, Saaristo A, Holopainen T, Yla-Herttuala S, Andersson LC, Virolainen S et al. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci Transl Med 2011; 3: 69ra11. PubMed Google Scholar
Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186–191. CASPubMed Google Scholar
Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 2006; 66: 2650–2657. CASPubMed Google Scholar
Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M . VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2007; 109: 1010–1017. CASPubMedPubMed Central Google Scholar
Kyzas PA, Geleff S, Batistatou A, Agnantis NJ, Stefanou D . Evidence for lymphangiogenesis and its prognostic implications in head and neck squamous cell carcinoma. J Pathol 2005; 206: 170–177. PubMed Google Scholar
Dadras SS, Lange-Asschenfeldt B, Velasco P, Nguyen L, Vora A, Muzikansky A et al. Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 2005; 18: 1232–1242. PubMed Google Scholar
Van den Eynden GG, Van der Auwera I, Colpaert CG, Dirix LY, Van Marck EA, Vermeulen PB . Letter to the editor: lymphangiogenesis in primary breast cancer. Cancer Lett 2007; 256: 279–281. CASPubMed Google Scholar
Van der Auwera I, Van den Eynden GG, Colpaert CG, Van Laere SJ, van Dam P, Van Marck EA et al. Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res 2005; 11: 7637–7642. CASPubMed Google Scholar
van der Schaft DW, Pauwels P, Hulsmans S, Zimmermann M, van de Poll-Franse LV, Griffioen AW . Absence of lymphangiogenesis in ductal breast cancer at the primary tumor site. Cancer Lett 2007; 254: 128–136. CASPubMed Google Scholar
Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank S et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest 2011; 121: 2000–2012. CASPubMedPubMed Central Google Scholar
Wong SY, Haack H, Crowley D, Barry M, Bronson RT, Hynes RO . Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res 2005; 65: 9789–9798. CASPubMed Google Scholar
Isaka N, Padera TP, Hagendoorn J, Fukumura D, Jain RK . Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Res 2004; 64: 4400–4404. CASPubMed Google Scholar
Fukumura D, Duda DG, Munn LL, Jain RK . Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models [Review]. Microcirculation 2010; 17: 206–225. CASPubMedPubMed Central Google Scholar
Azzali G . Tumor cell transendothelial passage in the absorbing lymphatic vessel of transgenic adenocarcinoma mouse prostate. Am J Pathol 2007; 170: 334–346. CASPubMedPubMed Central Google Scholar
Dadiani M, Kalchenko V, Yosepovich A, Margalit R, Hassid Y, Degani H et al. Real-time imaging of lymphogenic metastasis in orthotopic human breast cancer. Cancer Res 2006; 66: 8037–8041. CASPubMed Google Scholar
Sahai E . Illuminating the metastatic process [Review]. Nat Rev Cancer 2007; 7: 737–749. CASPubMed Google Scholar
Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E . Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 2009; 11: 1287–1296. CASPubMedPubMed Central Google Scholar
Kabashima K, Shiraishi N, Sugita K, Mori T, Onoue A, Kobayashi M et al. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 2007; 171: 1249–1257. CASPubMedPubMed Central Google Scholar
Kim M, Koh YJ, Kim KE, Koh BI, Nam DH, Alitalo K et al. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 2010; 70: 10411–10421. CASPubMed Google Scholar
Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56. CASPubMed Google Scholar
Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST . Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 2001; 93: 1638–1643. CASPubMed Google Scholar
Christiansen A, Detmar M . Lymphangiogenesis and Cancer. Genes Cancer (e-pub ahead of print 3 October 2011). Google Scholar
Ruddell A, Harrell MI, Minoshima S, Maravilla KR, Iritani BM, White SW et al. Dynamic contrast-enhanced magnetic resonance imaging of tumor-induced lymph flow. Neoplasia 2008; 10: 706–713. PubMedPubMed Central Google Scholar
Proulx ST, Luciani P, Derzsi S, Rinderknecht M, Mumprecht V, Leroux JC et al. Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res 2010; 70: 7053–7062. CASPubMedPubMed Central Google Scholar
Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J et al. Preparing the ‘soil’: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 2006; 66: 10365–10376. CASPubMed Google Scholar
Hirakawa S . From tumor lymphangiogenesis to lymphvascular niche [Review]. Cancer Sci 2009; 100: 983–989. CASPubMed Google Scholar
Cady B . Regional lymph node metastases; a singular manifestation of the process of clinical metastases in cancer: contemporary animal research and clinical reports suggest unifying concepts [Review]. Ann Surg Oncol 2007; 14: 1790–1800. PubMed Google Scholar
Viehl CT, Langer I, Guller U, Zanetti-Dallenbach R, Moch H, Wight E et al. Prognostic impact and therapeutic implications of sentinel lymph node micro-metastases in early-stage breast cancer patients [Review]. J Surg Oncol 2011; 103: 531–533. PubMed Google Scholar
Krag DN, Anderson SJ, Julian TB, Brown AM, Harlow SP, Costantino JP et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 2010; 11: 927–933. PubMedPubMed Central Google Scholar
Louis-Sylvestre C, Clough K, Asselain B, Vilcoq JR, Salmon RJ, Campana F et al. Axillary treatment in conservative management of operable breast cancer: dissection or radiotherapy? Results of a randomized study with 15 years of follow-up. J Clin Oncol 2004; 22: 97–101. PubMed Google Scholar
Moehrle M, Schippert W, Rassner G, Garbe C, Breuninger H . Micrometastasis of a sentinel lymph node in cutaneous melanoma is a significant prognostic factor for disease-free survival, distant-metastasis-free survival, and overall survival. Dermatol Surg 2004; 30: 1319–1328. CASPubMed Google Scholar
Leong SP, Zuber M, Ferris RL, Kitagawa Y, Cabanas R, Levenback C et al. Impact of nodal status and tumor burden in sentinel lymph nodes on the clinical outcomes of cancer patients [Review]. J Surg Oncol 2011; 103: 518–530. PubMed Google Scholar
Clinicaltrials. Trial Identifier NCT01288989. US National Institutes of Health: Bethesda, MD.
Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW, Luan B et al. Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 2005; 65: 6901–6909. CASPubMed Google Scholar
Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA . Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 2007; 170: 1178–1191. PubMedPubMed Central Google Scholar
Sung HK, Morisada T, Cho CH, Oike Y, Lee J, Sung EK et al. Intestinal and peri-tumoral lymphatic endothelial cells are resistant to radiation-induced apoptosis. Biochem Biophys Res Commun 2006; 345: 545–551. CASPubMed Google Scholar
Mumprecht V, Honer M, Vigl B, Proulx ST, Trachsel E, Kaspar M et al. In vivo imaging of inflammation- and tumor-induced lymph node lymphangiogenesis by immuno-positron emission tomography. Cancer Res 2010; 70: 8842–8851. CASPubMedPubMed Central Google Scholar