- Sonenberg N, Hinnebusch AG . Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009; 136: 731–745.
Article CAS PubMed PubMed Central Google Scholar
- Hiremath LS, Webb NR, Rhoads RE . Immunological detection of the messenger RNA cap-binding protein. J Biol Chem 1985; 260: 7843–7849.
CAS PubMed Google Scholar
- Duncan R, Milburn SC, Hershey JW . Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J Biol Chem 1987; 262: 380–388.
CAS PubMed Google Scholar
- Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr. et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function. Nature 1994; 371: 762–767.
Article CAS PubMed Google Scholar
- Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N . 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem 1998; 273: 14002–14007.
Article CAS PubMed Google Scholar
- Flynn A, Proud CG . Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J Biol Chem 1995; 270: 21684–21688.
Article CAS PubMed Google Scholar
- Joshi B, Cai AL, Keiper BD, Minich WB, Mendez R, Beach CM et al. Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J Biol Chem 1995; 270: 14597–14603.
Article CAS PubMed Google Scholar
- Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA . Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 1999; 19: 1871–1880.
Article CAS PubMed PubMed Central Google Scholar
- Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N . Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 1999; 18: 270–297.
Article CAS PubMed PubMed Central Google Scholar
- Lazaris-Karatzas A, Montine KS, Sonenberg N . Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature 1990; 345: 544–547.
Article CAS PubMed Google Scholar
- Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004; 10: 484–486.
Article CAS PubMed Google Scholar
- Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T et al. Dissecting eIF4E action in tumorigenesis. Genes Dev 2007; 21: 3232–3237.
Article CAS PubMed PubMed Central Google Scholar
- Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N . eIF4E—from translation to transformation. Oncogene 2004; 23: 3172–3179.
Article CAS PubMed Google Scholar
- Lee T, Pelletier J Eukaryotic initiation factor 4F: a vulnerability of tumor cells. Future Med Chem 2012; 4: 19–31.
Article CAS PubMed Google Scholar
- Jia Y, Polunovsky V, Bitterman PB, Wagner CR . Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med Res Rev 2012; 32: 786–814.
Article CAS PubMed PubMed Central Google Scholar
- Malina A, Mills JR, Pelletier J . Emerging therapeutics targeting mRNA translation. Cold Spring Harb Perspect Biol 2012; 4: a012377.
Article PubMed PubMed Central Google Scholar
- Topisirovic I, Ruiz-Gutierrez M, Borden KL . Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 2004; 64: 8639–8642.
Article CAS PubMed Google Scholar
- Ueda T, Sasaki M, Elia AJ, Chio II, Hamada K, Fukunaga R et al. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci USA 2010; 107: 13984–13990.
Article CAS PubMed PubMed Central Google Scholar
- Konicek BW, Stephens JR, McNulty AM, Robichaud N, Peery RB, Dumstorf CA et al. Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res 2011; 71: 1849–1857.
Article CAS PubMed Google Scholar
- De Benedetti A, Graff JR . eIF-4E expression and its role in malignancies and metastases. Oncogene 2004; 23: 3189–3199.
Article CAS PubMed Google Scholar
- Nasr Z, Robert F, Porco JA, Muller WJ, Pelletier J . eIF4F suppression in breast cancer affects maintenance and progression. Oncogene 2012; 32: 861–871.
Article PubMed PubMed Central Google Scholar
- Pettersson F, Yau C, Dobocan MC, Culjkovic-Kraljacic B, Retrouvey H, Puckett R et al. Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res 2011; 17: 2874–2884.
Article CAS PubMed PubMed Central Google Scholar
- Graff JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM et al. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res 2009; 69: 3866–3873.
Article CAS PubMed Google Scholar
- Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A et al. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA 2010; 107: 14134–14139.
Article CAS PubMed PubMed Central Google Scholar
- Li L, Price JE, Fan D, Zhang RD, Bucana CD, Fidler IJ . Correlation of growth capacity of human tumor cells in hard agarose with their in vivo proliferative capacity at specific metastatic sites. J Natl Cancer Inst 1989; 81: 1406–1412.
Article CAS PubMed Google Scholar
- Friedl P, Alexander S . Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011; 147: 992–1009.
Article CAS PubMed Google Scholar
- Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ . Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 1997; 139: 1861–1872.
Article CAS PubMed PubMed Central Google Scholar
- DaSilva J, Xu L, Kim HJ, Miller WT, Bar-Sagi D . Regulation of sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol 2006; 26: 1898–1907.
Article CAS PubMed PubMed Central Google Scholar
- Hefner Y, Borsch-Haubold AG, Murakami M, Wilde JI, Pasquet S, Schieltz D et al. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem 2000; 275: 37542–37551.
Article CAS PubMed Google Scholar
- Guil S, Long JC, Caceres JF . hnRNPA1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 2006; 26: 5744–5758.
Article CAS PubMed PubMed Central Google Scholar
- Buxade M, Parra JL, Rousseau S, Shpiro N, Marquez R, Morrice N et al. The Mnks are novel components in the control of TNF alpha biosynthesis and phosphorylate and regulate hnRNPA1. Immunity 2005; 23: 177–189.
Article CAS PubMed Google Scholar
- Byers HR, Etoh T, Doherty JR, Sober AJ, Mihm MC Jr. . Cell migration and actin organization in cultured human primary, recurrent cutaneous and metastatic melanoma. Time-lapse and image analysis. Am J Pathol 1991; 139: 423–435.
CAS PubMed PubMed Central Google Scholar
- Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987; 47: 3239–3245.
CAS PubMed Google Scholar
- Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP . Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat 1994; 31: 325–335.
Article CAS PubMed Google Scholar
- Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012; 485: 55–61.
Article CAS PubMed PubMed Central Google Scholar
- Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.
Article PubMed Google Scholar
- Huang da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.
Article PubMed Google Scholar
- Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.
Article CAS PubMed PubMed Central Google Scholar
- Xu J, Lamouille S, Derynck R . TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156–172.
Article CAS PubMed Google Scholar
- Zeisberg M, Neilson EG . Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009; 119: 1429–1437.
Article CAS PubMed PubMed Central Google Scholar
- Zhang YE . Non-Smad pathways in TGF-beta signaling. Cell Res 2009; 19: 128–139.
Article CAS PubMed Google Scholar
- Bakin AV, Rinehart C, Tomlinson AK, Arteaga CL . p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 2002; 115: 3193–3206.
CAS PubMed Google Scholar
- Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002; 62: 65–74.
Article CAS PubMed Google Scholar
- Imamura T, Hikita A, Inoue Y . The roles of TGF-beta signaling in carcinogenesis and breast cancer metastasis. Breast Cancer 2012; 19: 118–124.
Article PubMed Google Scholar
- Knauf U, Tschopp C, Gram H . Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol 2001; 21: 5500–5511.
Article CAS PubMed PubMed Central Google Scholar
- Scheper GC, Morrice NA, Kleijn M, Proud CG . The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol Cell Biol 2001; 21: 743–754.
Article CAS PubMed PubMed Central Google Scholar
- Aslakson CJ, Miller FR . Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399–1405.
CAS PubMed Google Scholar
- Guy CT, Cardiff RD, Muller WJ . Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12: 954–961.
Article CAS PubMed PubMed Central Google Scholar
- Dilworth SM . Polyoma virus middle T antigen and its role in identifying cancer-related molecules. Nat Rev Cancer 2002; 2: 951–956.
Article CAS PubMed Google Scholar
- Franci C, Takkunen M, Dave N, Alameda F, Gomez S, Rodriguez R et al. Expression of Snail protein in tumor-stroma interface. Oncogene 2006; 25: 5134–5144.
Article CAS PubMed Google Scholar
- Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH . Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 1996; 149: 273–282.
CAS PubMed PubMed Central Google Scholar
- Li BD, McDonald JC, Nassar R, De Benedetti A . Clinical outcome in stage I to III breast carcinoma and eIF4E overexpression. Ann Surg 1998; 227: 756–6l discussion 61-3.
Article CAS PubMed PubMed Central Google Scholar
- Li BD, Gruner JS, Abreo F, Johnson LW, Yu H, Nawas S et al. Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome. Ann Surg 2002; 235: 732–738 discussion 8–9.
Article PubMed PubMed Central Google Scholar
- Holm N, Byrnes K, Johnson L, Abreo F, Sehon K, Alley J et al. A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in node-negative breast cancer. Ann Surg Oncol 2008; 15: 3207–3215.
Article PubMed Google Scholar
- McClusky DR, Chu Q, Yu H, Debenedetti A, Johnson LW, Meschonat C et al. A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in node-positive breast cancer. Ann Surg 2005; 242: 584–590 discussion 90-2.
PubMed PubMed Central Google Scholar
- Crew JP, Fuggle S, Bicknell R, Cranston DW, de Benedetti A, Harris AL . Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br J Cancer 2000; 82: 161–166.
Article CAS PubMed Google Scholar
- Seki N, Takasu T, Mandai K, Nakata M, Saeki H, Heike Y et al. Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clin Cancer Res 2002; 8: 3046–3053.
CAS PubMed Google Scholar
- Seki N, Takasu T, Sawada S, Nakata M, Nishimura R, Segawa Y et al. Prognostic significance of expression of eukaryotic initiation factor 4E and 4E binding protein 1 in patients with pathological stage I invasive lung adenocarcinoma. Lung Cancer 2010; 70: 329–334.
Article PubMed Google Scholar
- Nathan CO, Franklin S, Abreo FW, Nassar R, De Benedetti A, Glass J . Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer. J Clin Oncol 1999; 17: 2909–2914.
Article CAS PubMed Google Scholar
- Wu M, Liu Y, Di X, Kang H, Zeng H, Zhao Y et al. EIF4E over-expresses and enhances cell proliferation and cell cycle progression in nasopharyngeal carcinoma. Med Oncol 2013; 30: 400.
Article PubMed Google Scholar
- Wang XL, Cai HP, Ge JH, Su XF . Detection of eukaryotic translation initiation factor 4E and its clinical significance in hepatocellular carcinoma. World J Gastroenterol 2012; 18: 2540–2544.
Article CAS PubMed PubMed Central Google Scholar
- Salehi Z, Mashayekhi F . Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem 2006; 39: 404–409.
Article CAS PubMed Google Scholar
- Chen CN, Hsieh FJ, Cheng YM, Lee PH, Chang KJ . Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome. J Surg Oncol 2004; 86: 22–27.
Article CAS PubMed Google Scholar
- Nathan CO, Carter P, Liu L, Li BD, Abreo F, Tudor A et al. Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene 1997; 15: 1087–1094.
Article CAS PubMed Google Scholar
- Scott PA, Smith K, Poulsom R, De Benedetti A, Bicknell R, Harris AL . Differential expression of vascular endothelial growth factor mRNA vs protein isoform expression in human breast cancer and relationship to eIF-4E. Br J Cancer 1998; 77: 2120–2128.
Article CAS PubMed PubMed Central Google Scholar
- Byrnes K, White S, Chu Q, Meschonat C, Yu H, Johnson LW et al. High eIF4E, VEGF, and microvessel density in stage I to III breast cancer. Ann Surg 2006; 243: 684–690.
Article PubMed PubMed Central Google Scholar
- Fan S, Ramalingam SS, Kauh J, Xu Z, Khuri FR, Sun SY . Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biol Ther 2009; 8: 1463–1469.
Article PubMed Google Scholar
- Yoshizawa A, Fukuoka J, Shimizu S, Shilo K, Franks TJ, Hewitt SM et al. Overexpression of phospho-eIF4E is associated with survival through AKT pathway in non-small cell lung cancer. Clin Cancer Res 2010; 16: 240–248.
Article CAS PubMed Google Scholar
- Zheng J, Li J, Xu L, Xie G, Wen Q, Luo J et al. Phosphorylated Mnk1 and eIF4E are associated with lymph node metastasis and poor prognosis of nasopharyngeal carcinoma. PLoS ONE 2014; 9: e89220.
Article PubMed PubMed Central Google Scholar
- Ferrandiz-Pulido C, Masferrer E, Toll A, Hernandez-Losa J, Mojal S, Pujol RM et al. mTOR signaling pathway in penile squamous cell carcinoma: pmTOR and peIF4E over expression correlate with aggressive tumor behavior. J Urol 2013; 190: 2288–2295.
Article CAS PubMed Google Scholar
- Adesso L, Calabretta S, Barbagallo F, Capurso G, Pilozzi E, Geremia R et al. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 2013; 32: 2848–2857.
Article CAS PubMed Google Scholar
- Grzmil M, Morin P Jr, Lino MM, Merlo A, Frank S, Wang Y et al. MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-beta signaling pathway in human glioblastoma. Cancer Res 2011; 71: 2392–2402.
Article CAS PubMed Google Scholar
- Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res 2005; 65: 7052–7058.
Article CAS PubMed Google Scholar
- Yin B, Morgan K, Hasz DE, Mao Z, Largaespada DA . Nfl gene inactivation in acute myeloid leukemia cells confers cytarabine resistance through MAPK and mTOR pathways. Leukemia 2006; 20: 151–154.
Article CAS PubMed Google Scholar
- Astanehe A, Finkbeiner MR, Krzywinski M, Fotovati A, Dhillon J, Berquin IM et al. MKNK1 is a YB-1 target gene responsible for imparting trastuzumab resistance and can be blocked by RSK inhibition. Oncogene 2012; 31: 4434–4446.
Article CAS PubMed Google Scholar
- Ramón y Cajal, Rojo S, Pone S, Castellana B, Hernandez Losa B, Sonenberg J et al. Clinical Translational Oncology (in press).
- C.S.H. Laboratory, RIPA buffer (05-01). Cold Spring Harbor Protocols, 2006. 2006(4): p. pdb.rec10617. http://cshprotocols.cshlp.org/content/2006/4/pdb.rec10617.short.
- Ling C, Su VM, Zuo D, Muller WJ . Loss of the 14-3-3sigma tumor suppressor is a critical event in ErbB2-mediated tumor progression. Cancer Discov 2012; 2: 68–81.
Article CAS PubMed Google Scholar
- Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M et al. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res 2012; 72: 6468–6476.
Article CAS PubMed Google Scholar
- Larsson O, Sonenberg N, Nadon R . Anota: analysis of differential translation in genome-wide studies. Bioinformatics 2011; 27: 1440–1441.
Article CAS PubMed Google Scholar
- Larsson O, Sonenberg N, Nadon R . Identification of differential translation in genome wide studies. Proc Natl Acad Sci USA 2010; 107: 21487–21492.
Article CAS PubMed PubMed Central Google Scholar
- Huang da W, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R et al. Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinformatics 2009. Chapter 13: Unit 13.