The gut microbiota influences anticancer immunosurveillance and general health (original) (raw)
Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol.3, 991–998 (2002). ArticlePubMedCAS Google Scholar
Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity21, 137–148 (2004). ArticlePubMedCAS Google Scholar
Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res.19, 1225–1231 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell28, 690–714 (2015). ArticlePubMedCAS Google Scholar
Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol.8, 59–73 (2008). ArticlePubMedCAS Google Scholar
Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol.14, 717–734 (2017). ArticlePubMedCAS Google Scholar
Szczepaniak Sloane, R. A. et al. Interaction of molecular alterations with immune response in melanoma. Cancer123, 2130–2142 (2017). ArticlePubMed Google Scholar
Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science348, 56–61 (2015). ArticlePubMedCAS Google Scholar
Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell161, 205–214 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Ribas, A. et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol.16, 908–918 (2015). ArticlePubMedCASPubMed Central Google Scholar
Prieto, P. A. et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin. Cancer Res.18, 2039–2047 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med.182, 459–465 (1995). ArticlePubMedCAS Google Scholar
Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science271, 1734–1736 (1996). ArticlePubMedCAS Google Scholar
Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest.124, 2246–2259 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med.366, 2443–2454 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med.366, 2455–2465 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med.372, 2521–2532 (2015). ArticlePubMedCAS Google Scholar
Larkin, J., Hodi, F. S. & Wolchok, J. D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med.373, 1270–1271 (2015). ArticlePubMedCAS Google Scholar
Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med.372, 2006–2017 (2015). ArticlePubMedPubMed Central Google Scholar
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science359, 91–97 (2018). ArticlePubMedCAS Google Scholar
Kaderbhai, C. et al. Antibiotic use does not appear to influence response to nivolumab. Anticancer Res.37, 3195–3200 (2017). PubMed Google Scholar
Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature541, 321–330 (2017). ArticlePubMedCAS Google Scholar
Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science342, 967–970 (2013). ArticlePubMedCASPubMed Central Google Scholar
Daillere, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity45, 931–943 (2016). ArticlePubMedCAS Google Scholar
Peled, J. U. et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J. Clin. Oncol.35, 1650–1659 (2017). ArticlePubMedPubMed Central Google Scholar
Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science350, 1084–1089 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Bhatt, A. P., Redinbo, M. R. & Bultman, S. J. The role of the microbiome in cancer development and therapy. CA Cancer J. Clin.67, 326–344 (2017). ArticlePubMedPubMed Central Google Scholar
Berry, D. et al. Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing. Proc. Natl Acad. Sci. USA110, 4720–4725 (2013). ArticlePubMedPubMed Central Google Scholar
Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol.54, 1469–1476 (2004). ArticlePubMedCAS Google Scholar
Ottman, N. et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol.83, e01014–17 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Ouwerkerk, J. P. et al. Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer. Appl. Environ. Microbiol.82, 6983–6993 (2016). ArticlePubMed CentralCASPubMed Google Scholar
Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol.73, 7767–7770 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
van Passel, M. W. J. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLOS ONE6, e16876 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Derrien, M., Belzer, C. & de Vos, W. M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog.106, 171–181 (2017). ArticlePubMed Google Scholar
Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature500, 541–546 (2013). ArticlePubMedCAS Google Scholar
Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut65, 426–436 (2016). ArticlePubMedCAS Google Scholar
Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science359, 104–108 (2018). ArticlePubMedCASPubMed Central Google Scholar
Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell27, 57–71 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Levin, V. A. & Levin, E. M. Dissolution and stability of carmustine in the absence of ethanol. Sel. Cancer Ther.5, 33–35 (1989). ArticlePubMedCAS Google Scholar
Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature513, 559–563 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab.24, 657–671 (2016). ArticlePubMedCAS Google Scholar
de Vos, W. M. Microbe profile: Akkermansia muciniphila: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa. Microbiology163, 646–648 (2017). ArticlePubMedCAS Google Scholar
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA110, 9066–9071 (2013). ArticlePubMedPubMed Central Google Scholar
Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med.23, 107–113 (2016). ArticlePubMedCAS Google Scholar
Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature528, 262–266 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Bauer, P. V. et al. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab.27, 101–117 (2018). ArticlePubMedCAS Google Scholar
Campbell, J. M., Bellman, S. M., Stephenson, M. D. & Lisy, K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res. Rev.40, 31–44 (2017). ArticlePubMedCAS Google Scholar
Ganesh, B. P., Klopfleisch, R., Loh, G. & Blaut, M. Commensal Akkermansia muciniphila exacerbates gut inflammation in _Salmonella typhimurium_-infected gnotobiotic mice. PLoS ONE8, e74963 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Hakansson, A. et al. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin. Exp. Med.15, 107–120 (2015). ArticlePubMedCAS Google Scholar
Kang, C. S. et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE8, e76520 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Dingemanse, C. et al. Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis36, 1388–1396 (2015). ArticlePubMedCAS Google Scholar
Seregin, S. S. et al. NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal Immunol.10, 434–445 (2017). ArticlePubMedCAS Google Scholar
Zella, G. C. et al. Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis. Inflamm. Bowel Dis.17, 1092–1100 (2011). ArticlePubMed Google Scholar
Shono, Y. et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci. Transl Med.8, 339ra71 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Gill, T., Asquith, M., Rosenbaum, J. T. & Colbert, R. A. The intestinal microbiome in spondyloarthritis. Curr. Opin. Rheumatol.27, 319–325 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Hold, G. L., Schwiertz, A., Aminov, R. I., Blaut, M. & Flint, H. J. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl. Environ. Microbiol.69, 4320–4324 (2003). ArticlePubMedPubMed CentralCAS Google Scholar
Martín, R. et al. Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front. Microbiol.8, 1226 (2017). ArticlePubMedPubMed Central Google Scholar
Lay, C. et al. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol.7, 933–946 (2005). ArticlePubMedCAS Google Scholar
Duncan, S. H., Hold, G. L., Harmsen, H. J., Stewart, C. S. & Flint, H. J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol.52, 2141–2146 (2002). PubMedCAS Google Scholar
Wrzosek, L. et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol.11, 61 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Sokol, H. et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis.15, 1183–1189 (2009). ArticlePubMedCAS Google Scholar
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA105, 16731–16736 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Rajilic–Stojanovic, M. et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology141, 1792–1801 (2011). ArticlePubMedCAS Google Scholar
Turnbaugh, P. J., Baeckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe3, 213–223 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Graessler, J. et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenom. J.13, 514–522 (2013). ArticleCAS Google Scholar
Balamurugan, R. et al. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br. J. Nutr.103, 335–338 (2010). ArticlePubMedCAS Google Scholar
Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature498, 99–103 (2013). ArticlePubMedCAS Google Scholar
De Palma, G. et al. Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol.10, 63 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
De Palma, G., Nadal, I., Collado, M. C. & Sanz, Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br. J. Nutr.102, 1154–1160 (2009). ArticlePubMedCAS Google Scholar
Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLOS ONE5, e10667 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Leclercq, S. et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl Acad. Sci. USA111, E4485–E4493 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science359, 97–103 (2018). ArticlePubMedCAS Google Scholar
Frankel, A. E. et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia19, 848–855 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol.28, 1368–1379 (2017). ArticlePubMedCAS Google Scholar
Felis, G. E. & Dellaglio, F. Taxonomy of Lactobacilli and Bifidobacteria. Curr. Issues Intest. Microbiol.8, 44–61 (2007). PubMedCAS Google Scholar
Picard, C. et al. Review article: Bifidobacteria as probiotic agents — physiological effects and clinical benefits. Aliment. Pharmacol. Ther.22, 495–512 (2005). ArticlePubMedCAS Google Scholar
Russell, D. A., Ross, R. P., Fitzgerald, G. F. & Stanton, C. Metabolic activities and probiotic potential of Bifidobacteria. Int. J. Food Microbiol.149, 88–105 (2011). ArticlePubMedCAS Google Scholar
Delcenserie, V. et al. Description of a new species. Bifidobacterium crudilactis sp. nov., isolated from raw milk and raw milk cheeses. Syst. Appl. Microbiol.30, 381–389 (2007). ArticlePubMedCAS Google Scholar
Verhelst, R. et al. Comparison between Gram stain and culture for the characterization of vaginal microflora: definition of a distinct grade that resembles grade I microflora and revised categorization of grade I microflora. BMC Microbiol.5, 61 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Okamoto, M., Benno, Y., Leung, K. P. & Maeda, N. Bifidobacterium tsurumiense sp. nov., from hamster dental plaque. Int. J. Syst. Evol. Microbiol.58, 144–148 (2008). ArticlePubMedCAS Google Scholar
Arboleya, S., Solis, G., Fernandez, N., de los Reyes-Gavilan, C. G. & Gueimonde, M. Facultative to strict anaerobes ratio in the preterm infant microbiota: a target for intervention? Gut Microbes3, 583–588 (2012). ArticlePubMedPubMed Central Google Scholar
Schell, M. A. et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl Acad. Sci. USA99, 14422–14427 (2002). ArticlePubMedPubMed CentralCAS Google Scholar
Lugli, G. A. et al. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl. Environ. Microbiol.80, 6383–6394 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Fernandez, L. et al. The microbiota of human milk in healthy women. Cell. Mol. Biol.59, 31–42 (2013). PubMedCAS Google Scholar
Martín, R. et al. Isolation of Bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol.75, 965–969 (2009). ArticlePubMedCAS Google Scholar
Sonnenburg, J. L., Chen, C. T. & Gordon, J. I. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol.4, e413 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Rios-Covian, D. et al. Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria. Front. Microbiol.6, 825 (2015). ArticlePubMedPubMed Central Google Scholar
Rios-Covian, D., Gueimonde, M., Duncan, S. H., Flint, H. J. & de los Reyes-Gavilan, C. G. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis. FEMS Microbiol. Lett.362, fnv176 (2015). ArticlePubMedCAS Google Scholar
Egan, M. et al. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol.14, 282 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Lopez, P. et al. Treg-inducing membrane vesicles from Bifidobacterium bifidum LMG13195 as potential adjuvants in immunotherapy. Vaccine30, 825–829 (2012). ArticlePubMedCAS Google Scholar
Griffiths, E. A. et al. In vivo effects of Bifidobacteria and lactoferrin on gut endotoxin concentration and mucosal immunity in BALB/C mice. Dig. Dis. Sci.49, 579–589 (2004). ArticlePubMedCAS Google Scholar
Wang, Z. et al. The relationship between intestinal Bifidobacteria and bacteria/endotoxin translocation in scalded rats [Chinese]. Zhonghua Shao Shang Za Zhi18, 365–368 (2002). PubMedCAS Google Scholar
Wang, Z. et al. The role of Bifidobacteria in gut barrier function after thermal injury in rats. J. Trauma61, 650–657 (2006). ArticlePubMed Google Scholar
Furrie, E. et al. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut54, 242–249 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Billimoria, Z. C., Pandya, S., Bhatt, P. & Pandya, B. Probiotics — to use, or not to use? An updated meta-analysis. Clin. Pediatr.55, 1242–1244 (2016). Article Google Scholar
Costeloe, K., Hardy, P., Juszczak, E., Wilks, M. & Millar, M. R. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet387, 649–660 (2016). ArticlePubMed Google Scholar
Yin, Y. N., Yu, Q. F., Fu, N., Liu, X. W. & Lu, F. G. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J. Gastroenterol.16, 3394–3401 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
[No authors listed.] Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 6: suitability of taxonomic units notified to EFSA until March 2017. EFSA J.15, 4884 (2017). Google Scholar
Didari, T., Solki, S., Mozaffari, S., Nikfar, S. & Abdollahi, M. A systematic review of the safety of probiotics. Exp. Opin. Drug Saf.13, 227–239 (2014). Article Google Scholar
Selinger, C. P. et al. Probiotic VSL#3 prevents antibiotic-associated diarrhoea in a double-blind, randomized, placebo-controlled clinical trial. J. Hosp. Infect.84, 159–165 (2013). ArticlePubMedCAS Google Scholar
Yu, J. et al. Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int. J. Cancer139, 1318–1326 (2016). ArticlePubMedCAS Google Scholar
Raisch, J., Rolhion, N., Dubois, A., Darfeuille-Michaud, A. & Bringer, M. A. Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. Lab. Invest.95, 296–307 (2015). ArticlePubMedCAS Google Scholar
Sobhani, I. et al. Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease? Ther. Adv. Gastroenterol.6, 215–229 (2013). ArticleCAS Google Scholar
Zhu, Q., Gao, R., Wu, W. & Qin, H. The role of gut microbiota in the pathogenesis of colorectal cancer. Tumor Biol.34, 1285–1300 (2013). Article Google Scholar
Ohigashi, S. et al. Changes of the intestinal microbiota, short chain fatty acids, and fecal pH in patients with colorectal cancer. Dig. Dis. Sci.58, 1717–1726 (2013). ArticlePubMedCAS Google Scholar
Le Leu, R. K., Hu, Y., Brown, I. L., Woodman, R. J. & Young, G. P. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis31, 246–251 (2010). ArticlePubMedCAS Google Scholar
Roller, M., Clune, Y., Collins, K., Rechkemmer, G. & Watzl, B. Consumption of prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis has minor effects on selected immune parameters in polypectomised and colon cancer patients. Br. J. Nutr.97, 676–684 (2007). ArticlePubMedCAS Google Scholar
Worthley, D. L. et al. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am. J. Clin. Nutr.90, 578–586 (2009). ArticlePubMedCAS Google Scholar
Rafter, J. et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr.85, 488–496 (2007). ArticlePubMedCAS Google Scholar
Liu, Z. et al. Positive regulatory effects of perioperative probiotic treatment on postoperative liver complications after colorectal liver metastases surgery: a double-center and double-blind randomized clinical trial. BMC Gastroenterol.15, 34 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Liu, Z.-H. et al. The effects of perioperative probiotic treatment on serum zonulin concentration and subsequent postoperative infectious complications after colorectal cancer surgery: a double-center and double-blind randomized clinical trial. Am. J. Clin. Nutr.97, 117–126 (2013). ArticlePubMedCAS Google Scholar
Wada, M. et al. Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Support. Care Cancer18, 751–759 (2010). ArticlePubMed Google Scholar
Xiao, J. Z. et al. Probiotics in the treatment of Japanese cedar pollinosis: a double-blind placebo-controlled trial. Clin. Exp. Allergy36, 1425–1435 (2006). ArticlePubMedCAS Google Scholar
Malaguarnera, M. et al. Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Dig. Dis. Sci.52, 3259–3265 (2007). ArticlePubMed Google Scholar
Namba, K., Hatano, M., Yaeshima, T., Takase, M. & Suzuki, K. Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci. Biotechnol. Biochem.74, 939–945 (2010). ArticlePubMedCAS Google Scholar
Tamaki, H. et al. Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: a randomized, double-blinded, placebo-controlled multicenter trial. Dig. Endosc.28, 67–74 (2016). ArticlePubMed Google Scholar
Rong, Y. et al. Reactivity toward Bifidobacterium longum and Enterococcus hirae demonstrate robust CD8+ T cell response and better prognosis in HBV-related hepatocellular carcinoma. Exp. Cell Res.358, 352–359 (2017). ArticlePubMedCAS Google Scholar
Li, X. et al. Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther.10, 105 (2003). ArticlePubMedCAS Google Scholar
Kuwahara, T. et al. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc. Natl Acad. Sci. USA101, 14919–14924 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Geva-Zatorsky, N. et al. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria. Nat. Med.21, 1091–1100 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature453, 620–625 (2008). ArticlePubMedCAS Google Scholar
Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell122, 107–118 (2005). ArticlePubMedCAS Google Scholar
Telesford, K. M. et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39+ Foxp3+ T cells and Treg function. Gut Microbes6, 234–242 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Chu, H. et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science352, 1116–1120 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun.7, 10391 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Rabizadeh, S. et al. Enterotoxigenic Bacteroides fragilis: a potential instigator of colitis. Inflamm. Bowel Dis.13, 1475–1483 (2007). ArticlePubMed Google Scholar
Kanauchi, O. et al. Eubacterium limosum ameliorates experimental colitis and metabolite of microbe attenuates colonic inflammatory action with increase of mucosal integrity. World J. Gastroenterol.12, 1071–1077 (2006). ArticlePubMedPubMed Central Google Scholar
Gordon, S. et al. Antimicrobial susceptibility patterns of common and unusual species of enterococci causing infections in the United States. J. Clin. Microbiol.30, 2373–2378 (1992). PubMedPubMed CentralCAS Google Scholar
Lister, D. M. et al. Outbreak of vanB vancomycin-resistant Enterococcus faecium colonization in a neonatal service. Am. J. Infect. Control43, 1061–1065 (2015). ArticlePubMed Google Scholar
Freitas, A. R. et al. Multilevel population genetic analysis of vanA and vanB Enterococcus faecium causing nosocomial outbreaks in 27 countries (1986–2012). J. Antimicrob. Chemother.71, 3351–3366 (2016). ArticlePubMedCAS Google Scholar
Alatorre-Fernandez, P. et al. A polyclonal outbreak of bloodstream infections by Enterococcus faecium in patients with hematologic malignancies. Am. J. Infect. Control45, 260–266 (2017). ArticlePubMed Google Scholar
Porter, L. A. & Goldberg, J. B. Influence of neutrophil defects on Burkholderia cepacia complex pathogenesis. Front. Cell. Infect. Microbiol.1, 9 (2011). ArticlePubMedPubMed Central Google Scholar
Pitt, J. M. et al. Enhancing the clinical coverage and anticancer efficacy of immune checkpoint blockade through manipulation of the gut microbiota. Oncoimmunology6, e1132137 (2017). ArticlePubMedCAS Google Scholar
Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature551, 512–516 (2017). PubMedCASPubMed Central Google Scholar
Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol.31, 814–821 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol.32, 834–841 (2014). ArticlePubMedCAS Google Scholar
Lloyd-Price, J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature550, 61–66 (2017). PubMedPubMed CentralCAS Google Scholar
Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol.35, 1069–1076 (2017). PubMedCAS Google Scholar
Laffin, M. & Madsen, K. L. Fecal microbial transplantation in inflammatory bowel disease: a movement too big to be ignored. Clin. Pharmacol. Ther.102, 588–590 (2017). ArticlePubMedCAS Google Scholar
Zitvogel, L., Ayyoub, M., Routy, B. & Kroemer, G. Microbiome and anticancer immunosurveillance. Cell165, 276–287 (2016). ArticlePubMedCAS Google Scholar
Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature548, 43–51 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Ishikawa, D. et al. Changes in intestinal microbiota following combination therapy with fecal microbial transplantation and antibiotics for ulcerative colitis. Inflamm. Bowel Dis.23, 116–125 (2017). ArticlePubMed Google Scholar
Klaenhammer, T. R., Kleerebezem, M., Kopp, M. V. & Rescigno, M. The impact of probiotics and prebiotics on the immune system. Nat. Rev. Immunol.12, 728–734 (2012). ArticlePubMedCAS Google Scholar
Pflug, N. et al. Efficacy of antineoplastic treatment is associated with the use of antibiotics that modulate intestinal microbiota. Oncoimmunology5, e1150399 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Galloway-Pena, J. R. et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia. Cancer122, 2186–2196 (2016). ArticlePubMedCAS Google Scholar
Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut65, 1973–1980 (2016). ArticlePubMedCAS Google Scholar
Routy, B. et al. The influence of gut-decontamination prophylactic antibiotics on acute graft-versus-host disease and survival following allogeneic hematopoietic stem cell transplantation. Oncoimmunology6, e1258506 (2017). ArticlePubMedCAS Google Scholar
Jenq, R. R. et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol. Blood Marrow Transplant.21, 1373–1383 (2015). ArticlePubMedPubMed Central Google Scholar
Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science357, 1156–1160 (2017). ArticlePubMedPubMed CentralCAS Google Scholar