- Gaede, P., Lund-Andersen, H., Parving, H. H. & Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. New Engl. J. Med. 358, 580–591 (2008).
Article PubMed CAS Google Scholar
- Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New Engl. J. Med. 373, 2117–2128 (2015).
Article PubMed CAS Google Scholar
- Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. New Engl. J. Med. 375, 311–322 (2016).
Article PubMed CAS Google Scholar
- Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. New Engl. J. Med. 377, 1119–1131 (2017). A milestone study showing that IL-1 antagonism prevents cardiovascular diseases.
Article PubMed CAS Google Scholar
- Garber, A. J. Incretin effects on beta-cell function, replication, and mass: the human perspective. Diabetes Care 34, S258–S263 (2011).
Article PubMed PubMed Central CAS Google Scholar
- Del Rey, A. & Besedovsky, H. O. Metabolic and neuroendocrine effects of pro-inflammatory cytokines. Eur. J. Clin. Invest. 22, 10–15 (1992).
PubMed Google Scholar
- Spinas, G. A. et al. The bimodal effect of interleukin 1 on rat pancreatic beta-cells–stimulation followed by inhibition–depends upon dose, duration of exposure, and ambient glucose concentration. Acta Endocrinol.(Copenh) 119, 307–311 (1988). The first study to demonstrate bimodal effect of IL-1 on β-cell secretory function.
Article CAS Google Scholar
- Maedler, K. et al. FLIP switches Fas-mediated glucose signaling in human pancreatic ß cells from apoptosis to cell replication. Proc. Natl Acad. Sci. USA 99, 8236–8241 (2002).
Article PubMed CAS PubMed Central Google Scholar
- Boni-Schnetzler, M. et al. beta cell-specific deletion of the IL-1 receptor antagonist impairs beta cell proliferation and insulin secretion. Cell Rep. 22, 1774–1786 (2018).
Article PubMed CAS Google Scholar
- Dror, E. et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol. 18, 283–292 (2017). First study assigning to IL-1β a physiological role in the regulation of insulin secretion.
Article PubMed CAS Google Scholar
- Ellingsgaard, H. et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 17, 1481–1489 (2011).
Article PubMed PubMed Central CAS Google Scholar
- Dalmas, E. et al. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity 47, 1774–1786 (2017).
Article CAS Google Scholar
- Eizirik, D. L., Sandler, S., Welsh, N., Juntti-Berggren, L. & Berggren, P. O. Interleukin-1β-induced stimulation of insulin release in mouse pancreatic islets is related to diacylglycerol production and protein kinase C activation. Mol Cell Endocrinol. 111, 159–165 (1995).
Article PubMed CAS Google Scholar
- Mandrup-Poulsen, T., Pickersgill, L. & Donath, M. Y. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 6, 158–166 (2010).
Article PubMed CAS Google Scholar
- Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).
Article PubMed CAS Google Scholar
- Kolb, H. & Mandrup-Poulsen, T. An immune origin of type 2 diabetes? Diabetologia 48, 1038–1050 (2005).
Article PubMed CAS Google Scholar
- Donath, M. Y., Storling, J., Berchtold, L. A., Billestrup, N. & Mandrup-Poulsen, T. Cytokines and beta-cell biology: from concept to clinical translation. Endocr. Rev. 29, 334–350 (2008).
Article PubMed CAS Google Scholar
- Boni-Schnetzler, M. et al. Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150, 5218–5229 (2009).
Article PubMed CAS Google Scholar
- Corbett, J. A., Kwon, G., Misko, T. P., Rodi, C. P. & McDaniel, M. L. Tyrosine kinase involvement in IL-1 beta-induced expression of iNOS by beta-cells purified from islets of Langerhans. Am. J. Physiol. 267, C48–C54 (1994).
Article PubMed CAS Google Scholar
- Ortis, F. et al. Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-kappaB activation. Mol. Endocrinol. 20, 1867–1879 (2006).
Article PubMed CAS Google Scholar
- Meyerovich, K. et al. The non-canonical NF-kappaB pathway is induced by cytokines in pancreatic beta cells and contributes to cell death and proinflammatory responses in vitro. Diabetologia 59, 512–521 (2016).
Article PubMed CAS Google Scholar
- Hansen, J. B. et al. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic beta cell fate in response to cytokines. Cell Metab. 16, 449–461 (2012). This study indicates the link between low-grade inflammation, ROS formation, iron handling and β-cell damage, and also explains the selective toxic effect of IL-1 on β-cells.
Article PubMed CAS Google Scholar
- Lenzen, S., Drinkgern, J. & Tiedge, M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 20, 463–466 (1996).
Article PubMed CAS Google Scholar
- Berchtold, L. A., Prause, M., Storling, J. & Mandrup-Poulsen, T. Cytokines and pancreatic beta-cell apoptosis. Adv. Clin. Chem. 75, 99–158 (2016).
Article PubMed CAS Google Scholar
- Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993). First study implicating cytokines in insulin resistance in animals.
Article PubMed CAS Google Scholar
- Munoz-Canoves, P., Scheele, C., Pedersen, B. K. & Serrano, A. L. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 280, 4131–4148 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Pedersen, B. K. et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc. Nutr. Soc. 63, 263–267 (2004).
Article PubMed CAS Google Scholar
- Carey, A. L. & Febbraio, M. A. Interleukin-6 and insulin sensitivity: friend or foe? Diabetologia 47, 1135–1142 (2004).
Article PubMed CAS Google Scholar
- Hotamisligil, G. S. & Erbay, E. Nutrient sensing and inflammation in metabolic diseases. Nat. Rev. Immunol. 8, 923–934 (2008).
Article PubMed PubMed Central CAS Google Scholar
- Donath, M. Y., Storling, J., Maedler, K. & Mandrup-Poulsen, T. Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J. Mol. Med. 81, 455–470 (2003).
Article PubMed CAS Google Scholar
- Ehses, J. A., Ellingsgaard, H., Boni-Schnetzler, M. & Donath, M. Y. Pancreatic islet inflammation in type 2 diabetes: from alpha and beta cell compensation to dysfunction. Arch. Physiol. Biochem. 115, 240–247 (2009).
Article PubMed CAS Google Scholar
- Westwell-Roper, C. Y., Ehses, J. A. & Verchere, C. B. Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1beta production and beta cell dysfunction. Diabetes 63, 1697–1711 (2014).
Article CAS Google Scholar
- Westwell-Roper, C. et al. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J. Immunol. 187, 2755–2765 (2011).
Article PubMed CAS Google Scholar
- Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010). First article showing how a secreted product of β- cells serves as a damage-associated molecular pattern and activates the inflammasome to produce IL-1β and IL-18.
Article PubMed PubMed Central CAS Google Scholar
- Jourdan, T. et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat. Med. 19, 1132–1140 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Oslowski, C. M. et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab. 16, 265–273 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Lerner, A. G. et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16, 250–264 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Maedler, K. et al. Glucose-induced beta-cell production of interleukin-1beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851–860 (2002). First study showing a role for IL-1β in the pathogenesis of T2D.
Article PubMed PubMed Central CAS Google Scholar
- Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).
Article PubMed CAS Google Scholar
- Pal, D. et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18, 1279–1285 (2012).
Article PubMed CAS Google Scholar
- Maedler, K. et al. FLIP switches Fas-mediated glucose signaling in human pancreatic beta cells from apoptosis to cell replication. Proc. Natl Acad. Sci. USA 99, 8236–8241 (2002).
Article PubMed CAS PubMed Central Google Scholar
- Boni-Schnetzler, M. et al. Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab. 93, 4065–4074 (2008).
Article PubMed PubMed Central CAS Google Scholar
- Robertson, R. P., Harmon, J., Tran, P. O. & Poitout, V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53, S119–S124 (2004).
Article PubMed CAS Google Scholar
- Weir, G. C. & Bonner-Weir, S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53, S16–S21 (2004).
Article PubMed CAS Google Scholar
- Prentki, M. & Nolan, C. J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802–1812 (2006).
Article PubMed PubMed Central CAS Google Scholar
- Hull, R. L., Westermark, G. T., Westermark, P. & Kahn, S. E. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 3629–3643 (2004).
Article PubMed CAS Google Scholar
- Harding, H. P. & Ron, D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51, S455–S461 (2002).
Article PubMed CAS Google Scholar
- Donath, M. Y., Gross, D. J., Cerasi, E. & Kaiser, N. Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 48, 738–744 (1999).
Article PubMed CAS Google Scholar
- Maedler, K. et al. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 50, 69–76 (2001).
Article PubMed CAS Google Scholar
- Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).
Article PubMed Google Scholar
- Hotamisligil, G. S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Martinez, J., Verbist, K., Wang, R. & Green, D. R. The relationship between metabolism and the autophagy machinery during the innate immune response. Cell Metab. 17, 895–900 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Skurk, T., Alberti-Huber, C., Herder, C. & Hauner, H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 92, 1023–1033 (2007).
Article PubMed CAS Google Scholar
- Stienstra, R. et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 12, 593–605 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Koenen, T. B. et al. Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue. Diabetes 60, 517–524 (2011).
Article PubMed PubMed Central CAS Google Scholar
- Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).
Article PubMed PubMed Central CAS Google Scholar
- Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).
Article PubMed CAS Google Scholar
- Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).
Article PubMed PubMed Central CAS Google Scholar
- Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).
Article PubMed PubMed Central CAS Google Scholar
- Ye, J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int. J. Obes. 33, 54–66 (2009).
Article CAS Google Scholar
- Cox, L. M. & Blaser, M. J. Pathways in microbe-induced obesity. Cell Metab. 17, 883–894 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).
Article PubMed CAS PubMed Central Google Scholar
- Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
Article PubMed Google Scholar
- Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).
Article PubMed CAS Google Scholar
- Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).
Article PubMed CAS Google Scholar
- Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).
Article PubMed CAS Google Scholar
- Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Naure. 542, 177–185 (2017).
CAS Google Scholar
- Sun, B. & Karin, M. Obesity, inflammation, and liver cancer. J. Hepatol. 56, 704–713 (2012).
Article PubMed CAS Google Scholar
- Libby, P., Ridker, P. M. & Hansson, G. K., Leducq Transatlantic Network on, Atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol. 54, 2129–2138 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Stahel, M., Becker, M., Graf, N. & Michels, S. Systemic interleukin 1β inhibition in proliferative diabetic retinopathy: a prospective open-label study using canakinumab. Retina 36, 385–391 (2016).
Article PubMed PubMed Central CAS Google Scholar
- So, A., De Smedt, T., Revaz, S. & Tschopp, J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther. 9, R28 (2007).
Article PubMed PubMed Central CAS Google Scholar
- Greenwood, R. H., Mahler, R. F. & Hales, C. N. Improvement in insulin secretion in diabetes after diazoxide. Lancet 1, 444–447 (1976).
Article PubMed CAS Google Scholar
- Kelly, B., Tannahill, G. M., Murphy, M. P. & O’Neill, L. A. Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1beta (IL-1beta) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J. Biol. Chem. 290, 20348–20359 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Cavelti-Weder, C. et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care 35, 1654–1662 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. J. Am. Coll. Cardiol. 71, 2392–2401 (2018).
Article PubMed CAS Google Scholar
- Jorns, A. et al. Islet infiltration, cytokine expression and beta cell death in the NOD mouse, BB rat, Komeda rat, LEW.1AR1-iddm rat and humans with type 1 diabetes. Diabetologia 57, 512–521 (2014).
Article PubMed CAS Google Scholar
- Reddy, S. et al. Distribution of IL-1beta immunoreactive cells in pancreatic biopsies from living volunteers with new-onset type 1 diabetes: comparison with donors without diabetes and with longer duration of disease. Diabetologia 61, 1362–1373 (2018).
Article PubMed CAS Google Scholar
- Ablamunits, V. et al. Synergistic reversal of type 1 diabetes in NOD mice with anti-CD3 and interleukin-1 blockade: evidence of improved immune regulation. Diabetes 61, 145–154 (2012).
Article PubMed CAS Google Scholar
- Mastrandrea, L. et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care 32, 1244–1249 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Moran, A. et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381, 1905–1915 (2013).
Article PubMed CAS Google Scholar
- Mandrup-Poulsen, T. et al. Monokine antagonism is reduced in patients with IDDM. Diabetes 43, 1242–1247 (1994).
Article PubMed CAS Google Scholar
- US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02293837?term=IL-6&cond=Type+1+diabetes&rank=3 (2019).
- Cabrera, S. M. et al. Interleukin-1 antagonism moderates the inflammatory state associated with type 1 diabetes during clinical trials conducted at disease onset. Eur. J. Immunol. 46, 1030–1046 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Cardozo, A. K. et al. A comprehensive analysis of cytokine-induced and nuclear factor-κB-dependent genes in primary rat pancreatic β-cells. J. Biol. Chem. 276, 48879–48886 (2001).
Article PubMed CAS Google Scholar
- Christensen, D. P. et al. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol. Med. 17, 378–390 (2011).
Article PubMed PubMed Central CAS Google Scholar
- Larsen, L. et al. Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 50, 779–789 (2007). First study showing the β-cell protective effects of HDAC inhibitors.
Article PubMed CAS Google Scholar
- Lundh, M. et al. Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia 53, 2569–2578 (2010).
Article PubMed CAS Google Scholar
- Lundh, M. et al. Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children. Diabetologia 55, 2421–2431 (2012).
Article PubMed CAS Google Scholar
- Christensen, D. P. et al. Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and beta-cell protection. Proc. Natl Acad. Sci. USA 111, 1055–1059 (2014).
Article PubMed CAS PubMed Central Google Scholar
- Chou, D. H. et al. Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis. Chem. Biol. 19, 669–673 (2012).
Article PubMed PubMed Central CAS Google Scholar
- Patel, T., Patel, V., Singh, R. & Jayaraman, S. Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol. Cell Biol. 89, 640–649 (2011).
Article PubMed CAS Google Scholar
- Lundh, M., Galbo, T., Poulsen, S. S. & Mandrup-Poulsen, T. Histone deacetylase 3 inhibition improves glycaemia and insulin secretion in obese diabetic rats. Diabetes Obes. Metab. 17, 703–707 (2015).
Article PubMed CAS Google Scholar
- Wagner, F. F. et al. An isochemogenic set of inhibitors to define the therapeutic potential of histone deacetylases in beta-cell protection. ACS Chem. Biol. 11, 363–374 (2016).
Article PubMed CAS Google Scholar
- Dinarello, C. A. et al. Suppression of innate inflammation and immunity by interleukin-37. Eur. J. Immunol. 46, 1067–1081 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Ballak, D. B. et al. IL-37 protects against obesity-induced inflammation and insulin resistance. Nat. Commun. 5, 4711 (2014). First study showing protection against insulin resistance and inflammation by IL-37.
Article PubMed CAS Google Scholar
- Jonigk, D. et al. Anti-inflammatory and immunomodulatory properties of alpha1-antitrypsin without inhibition of elastase. Proc. Natl Acad. Sci. USA 110, 15007–15012 (2013).
Article PubMed CAS PubMed Central Google Scholar
- Ter Horst, R. et al. Host and environmental factors influencing individual human cytokine responses. Cell 167, 1111–1124.e1113 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Lewis, E. C. et al. α1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc. Natl Acad. Sci. USA 105, 16236–16241 (2008). First study showing that AAT protects against inflammation-induced β-cell destruction.
Article PubMed CAS PubMed Central Google Scholar
- Koulmanda, M. et al. Curative and beta cell regenerative effects of alpha1-antitrypsin treatment in autoimmune diabetic NOD mice. Proc. Natl Acad. Sci. USA 105, 16242–16247 (2008).
Article PubMed CAS PubMed Central Google Scholar
- Gottlieb, P. A. et al. alpha1-Antitrypsin therapy downregulates toll-like receptor-induced IL-1beta responses in monocytes and myeloid dendritic cells and may improve islet function in recently diagnosed patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 99, E1418–E1426 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Donath, M. Y. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat. Rev. Drug Discov. 13, 465–476 (2014).
Article PubMed CAS Google Scholar
- Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. New Engl. J. Med. 356, 1517–1526 (2007). First clinical trial demonstrating proof of concept for the role of IL-1 in glycaemic control and β-cell function in type 2 diabetes.
Article PubMed CAS Google Scholar
- van Asseldonk, E. J. et al. Treatment with anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 96, 2119–2126 (2011).
Article PubMed CAS Google Scholar
- van Poppel, P. C. et al. The interleukin-1 receptor antagonist anakinra improves first-phase insulin secretion and insulinogenic index in subjects with impaired glucose tolerance. Diabetes Obes. Metab. 16, 1269–1273 (2014).
Article PubMed CAS Google Scholar
- Rissanen, A., Howard, C. P., Botha, J. & Thuren, T. Effect of anti-IL-1beta antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes. Metab. 14, 1088–1096 (2012).
Article PubMed CAS Google Scholar
- Hensen, J., Howard, C. P., Walter, V. & Thuren, T. Impact of interleukin-1beta antibody (canakinumab) on glycaemic indicators in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab. 39, 524–531 (2013).
Article PubMed CAS Google Scholar
- Sloan-Lancaster, J. et al. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes. Diabetes Care 36, 2239–2246 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Green, J. B. et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. New Engl. J. Med. 373, 232–242 (2015).
Article PubMed CAS Google Scholar
- Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).
Article PubMed CAS Google Scholar
- Abbate, A. et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] pilot study). Am. J. Cardiol. 105, 1371–1377.e1371 (2010). A milestone study showing that IL-1 antagonism may prevent heart failure.
Article PubMed CAS Google Scholar
- Abbate, A. et al. Comparative safety of interleukin-1 blockade with anakinra in patients with ST-segment elevation acute myocardial infarction (from the VCU-ART and VCU-ART2 pilot studies). Am. J. Cardiol. 115, 288–292 (2015).
Article PubMed CAS Google Scholar
- Van Tassell, B. W. et al. Interleukin-1 blockade in recently decompensated systolic heart failure: results from REDHART (Recently Decompensated Heart Failure Anakinra Response Trial). Circ. Heart Fail. 10, e004373 (2017).
Article PubMed PubMed Central CAS Google Scholar
- Van Tassell, B. W. et al. Rationale and design of the Virginia Commonwealth University-Anakinra Remodeling Trial-3 (VCU-ART3): a randomized, placebo-controlled, double-blinded, multicenter study. Clin. Cardiol. 41, 1004–1008 (2018).
Article PubMed PubMed Central Google Scholar
- Kataria, Y., Ellervik, C. & Mandrup-Poulsen, T. Treatment of type 2 diabetes by targeting interleukin-1 – a meta-analysis of 2921 patients. Semin. Immunopathol. 41, 413–425 (2019).
Article PubMed Google Scholar
- Febbraio, M. A. et al. Preclinical models for studying NASH-driven HCC: how useful are they? Cell Metab. 29, 18–26 (2018).
Article PubMed CAS PubMed Central Google Scholar
- Schlesinger, S. et al. General and abdominal obesity and incident distal sensorimotor polyneuropathy: insights into inflammatory biomarkers as potential mediators in the KORA F4/FF4 cohort. Diabetes Care 42, 240–247 (2019).
Article PubMed CAS Google Scholar
- Herder, C. et al. A systemic inflammatory signature reflecting cross talk between innate and adaptive immunity is associated with incident polyneuropathy: KORA F4/FF4 study. Diabetes 67, 2434–2442 (2018).
Article PubMed CAS Google Scholar
- Herder, C. et al. Proinflammatory cytokines predict the incidence and progression of distal sensorimotor polyneuropathy: KORA F4/FF4 study. Diabetes care 40, 569–576 (2017).
Article PubMed CAS Google Scholar
- Herder, C. et al. Association of subclinical inflammation with polyneuropathy in the older population: KORA F4 study. Diabetes Care 36, 3663–3670 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Herder, C. et al. Subclinical inflammation and diabetic polyneuropathy: MONICA/KORA Survey F3 (Augsburg, Germany). Diabetes Care 32, 680–682 (2009).
Article PubMed PubMed Central Google Scholar
- Tesch, G. H. Diabetic nephropathy - is this an immune disorder? Clin. Sci. 131, 2183–2199 (2017).
Article CAS Google Scholar
- Mesquida, M., Leszczynska, A., Llorenc, V. & Adan, A. Interleukin-6 blockade in ocular inflammatory diseases. Clin. Exp. Immunol. 176, 301–309 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Ebrahimi, F. et al. Interleukin-1 antagonism in men with metabolic syndrome and low testosterone - a randomized clinical trial. J. Clin. Endocrinol. Metab. 103, 3466–3476 (2018).
Article PubMed Google Scholar
- Urwyler, S. A., Schuetz, P., Ebrahimi, F., Donath, M. Y. & Christ-Crain, M. Interleukin-1 antagonism decreases cortisol levels in obese individuals. J. Clin. Endocrinol. Metab. 102, 1712–1718 (2017).
Article PubMed Google Scholar
- Lehrskov, L. L. et al. The role of IL-1 in postprandial fatigue. Mol. Metab. 12, 107–112 (2018).
Article PubMed PubMed Central CAS Google Scholar
- Cavelti-Weder, C. et al. Inhibition of IL-1beta improves fatigue in type 2 diabetes. Diabetes Care 34, e158 (2011).
Article PubMed PubMed Central CAS Google Scholar
- Ruscitti, P.a.A. et al. Anti-interleukin-1 treatment in patients with rheumatoid arthritis and type 2 diabetes (TRACK): a multicentre, randomised, open, prospective, controlled, parallel-group trial. PLoS Med in press.
- Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293, 1673–1677 (2001). A seminal article showing reversal of insulin resistance by salsalate.
Article PubMed CAS Google Scholar
- Fleischman, A., Shoelson, S. E., Bernier, R. & Goldfine, A. B. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care 31, 289–294 (2008).
Article PubMed CAS Google Scholar
- Pedersen, B. K. & Febbraio, M. A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406 (2008).
Article PubMed CAS Google Scholar
- Pedersen, B. K. & Febbraio, M. A. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457–465 (2012).
Article PubMed CAS Google Scholar
- Carey, A. L. et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55, 2688–2697 (2006).
Article PubMed CAS Google Scholar
- Jansson, J. O. & Wallenius, V. Point-counterpoint: Interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 821; author reply 825 (2007).
PubMed Google Scholar
- Mooney, R. A. Counterpoint: interleukin-6 does not have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 816-818; discussion 818-819 (2007).
Article PubMed CAS Google Scholar
- Pedersen, B. K. & Febbraio, M. A. Point: interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 814–816 (2007).
Google Scholar
- Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).
Article PubMed PubMed Central CAS Google Scholar
- Weigert, C., Lehmann, R. & Schleicher, E. D. Point-counterpoint: interleukin-6 does/does not have a beneficial role in insulin sensitivity and glucose homeostasis. J. Appl. Physiol. 102, 820-821; author reply 825 (2007).
Article PubMed Google Scholar
- Wunderlich, F. T. et al. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 12, 237–249 (2010).
Article PubMed CAS Google Scholar
- Lazar, M. A. How obesity causes diabetes: not a tall tale. Science 307, 373–375 (2005).
Article PubMed CAS Google Scholar
- Marchetti, C. et al. OLT1177, a beta-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl Acad. Sci. USA 115, E1530–E1539 (2018). Key translational study showing metabolic benefits of inflammasome inhibition.
Article PubMed CAS PubMed Central Google Scholar
- Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Lewis, E. C. & Dinarello, C. A. Responses of IL-18- and IL-18 receptor-deficient pancreatic islets with convergence of positive and negative signals for the IL-18 receptor. Proc. Natl Acad. Sci. USA 103, 16852–16857 (2006).
Article PubMed CAS PubMed Central Google Scholar
- Moschen, A. R. et al. Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol. Med. 17, 840–845 (2011).
Article PubMed PubMed Central CAS Google Scholar
- Ballak, D. B. et al. Interleukin-37 treatment of mice with metabolic syndrome improves insulin sensitivity and reduces pro-inflammatory cytokine production in adipose tissue. J. Biol. Chem. 293, 14224–14236 (2018).
Article PubMed PubMed Central CAS Google Scholar
- Whitham, M. & Febbraio, M. A. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat. Rev. Drug Discov. 15, 719–729 (2016).
Article PubMed CAS Google Scholar
- Febbraio, M. Invited talk: IC7: a novel therapy for the treatment of metabolic disease. Obes. Res. Clin. Pract. 13, 39 (2019).
Article Google Scholar
- Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007). Pioneering study showing macrophage infiltration in islets of humans and animals with T2D.
Article PubMed CAS Google Scholar
- Chan, J. Y., Lee, K., Maxwell, E. L., Liang, C. & Laybutt, D. R. Macrophage alterations in islets of obese mice linked to beta cell disruption in diabetes. Diabetologia 62, 993–999 (2019).
Article PubMed CAS Google Scholar
- Ying, W. et al. Expansion of islet-resident macrophages leads to inflammation affecting beta cell proliferation and function in obesity. Cell Metab. 29, 457–474.e5 (2019).
Article PubMed CAS Google Scholar
- Xiao, X. et al. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc. Natl Acad. Sci. USA 111, E1211–E1220 (2014).
PubMed CAS PubMed Central Google Scholar
- Cao, X., Han, Z. B., Zhao, H. & Liu, Q. Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice. Int. J. Biochem. Cell Biol. 53, 372–379 (2014).
Article PubMed CAS Google Scholar
- Ying, W. et al. Expansion of islet-resident macrophages leads to inflammation affecting beta cell proliferation and function in obesity. Cell Metab. 29, 457–474.e455 (2019).
Article PubMed CAS Google Scholar
- Lee, Y. S., Wollam, J. & Olefsky, J. M. An integrated view of immunometabolism. Cell 172, 22–40 (2018).
Article PubMed CAS PubMed Central Google Scholar
- Deng, Y. & Scherer, P. E. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. N. Y. Acad. Sci. 1212, E1–E19 (2010).
Article PubMed PubMed Central Google Scholar
- Smith, U. & Kahn, B. B. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 280, 465–475 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Febbraio, M. A. Role of interleukins in obesity: implications for metabolic disease. Trends Endocrinol. Metab. 25, 312–319 (2014).
Article PubMed CAS Google Scholar
- Chawla, A. Control of macrophage activation and function by PPARs. Circ. Res. 106, 1559–1569 (2010).
Article PubMed PubMed Central CAS Google Scholar
- Breccia, M., Muscaritoli, M., Aversa, Z., Mandelli, F. & Alimena, G. Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. J. Clin. Oncol. 22, 4653–4655 (2004).
Article PubMed CAS Google Scholar
- AlAsfoor, S. et al. Imatinib reduces non-alcoholic fatty liver disease in obese mice by targeting inflammatory and lipogenic pathways in macrophages and liver. Sci. Rep. 8, 15331 (2018).
Article PubMed PubMed Central CAS Google Scholar
- Moraes-Vieira, P. M., Saghatelian, A. & Kahn, B. B. GLUT4 expression in adipocytes regulates de novo lipogenesis and levels of a novel class of lipids with antidiabetic and anti-inflammatory effects. Diabetes 65, 1808–1815 (2016).
Article PubMed PubMed Central CAS Google Scholar
- Bersoff-Matcha, S. J., Chamberlain, C., Cao, C., Kortepeter, C. & Chong, W. H. Fournier gangrene associated with sodium-glucose cotransporter-2 inhibitors: a review of spontaneous postmarketing cases. Ann. Intern. Med. 17, 764–769 (2019).
Article Google Scholar
- Ferguson, F. M. & Gray, N. S. Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov. 17, 353–377 (2018).
Article PubMed CAS Google Scholar
- Ridker, P. M. et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).
Article PubMed CAS Google Scholar
- Besancon, A. et al. Oral histone deacetylase inhibitor synergises with T cell targeted immunotherapy to preserve beta cell metabolic function and induce stable remission of new-onset autoimmune diabetes in NOD mice. Diabetologia 61, 389–398 (2018).
Article PubMed CAS Google Scholar