Davis M . The role of the amygdala in conditioned and unconditioned fear and anxiety. In: Aggleton JP (ed). The Amygdala, Volume 2. Oxford University Press: Oxford, United Kingdom, 2000, pp 213–287. Google Scholar
Rodrigues SM, Schafe GE, LeDoux JE . Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 2004; 44: 75–91. ArticleCASPubMed Google Scholar
Myers KM, Davis M . Behavioral and neural analysis of extinction: a review. Neuron 2002; 36: 567–584. ArticleCASPubMed Google Scholar
Pavlov IP . Conditioned Reflexes. Oxford University Press: London, 1927.
Bouton ME . Context and behavioral processes in extinction. Learn Mem 2004; 11: 485–494. ArticlePubMed Google Scholar
Delamater AR . Experimental extinction in Pavlovian conditioning: behavioural and neuroscience perspectives. Q J Exp Psychol B 2004; 57: 97–132. ArticlePubMed Google Scholar
Rescorla RA . Experimental extinction. In: Mowrer RR, Klein S (eds). Handbook of Contemporary Learning Theories. Erlbaum: Mahwah, NJ, 2001, pp 119–154. Google Scholar
Davis HP, Squire LR . Protein synthesis and memory: a review. Psychol Bull 1984; 96: 518–559. ArticleCASPubMed Google Scholar
Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR et al. Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 2004; 24: 3810–3815. ArticleCASPubMedPubMed Central Google Scholar
Ayres JJB, DeCosta MJ . The truly random control as an extinction. Psychon Sci 1971; 24: 31–33. Article Google Scholar
Frey PW, Butler CS . Extinction after aversive conditioning: an associative or nonassociative process. Learn Motivat 1977; 8: 1–17. Article Google Scholar
Rescorla RA . Pavlovian conditioning and its proper control procedures. Psychol Rev 1967; 74: 71–80. ArticleCASPubMed Google Scholar
DeVito PL, Fowler H . Effects of contingency violations on the extinction of a conditioned fear inhibitor and a conditioned fear excitor. J Exp Psychol Anim Behav Process 1986; 12: 99–115. ArticleCASPubMed Google Scholar
Kehoe EJ, White NE . Extinction revisited: similarities between extinction and reductions in US intensity in classical conditioning of the rabbit's nictitating membrane response. Anim Learn Behav 2002; 30: 96–111. ArticlePubMed Google Scholar
Rescorla RA, Heth CD . Reinstatement of fear to an extinguished conditioned stimulus. J Exp Psychol: Anim Behav Process 1975; 1: 88–96. CAS Google Scholar
Kremer EF . The Rescorla-Wagner model: losses in associative strength in compound conditioned stimuli. J Exp Psychol Anim Behav Process 1978; 4: 22–36. ArticleCASPubMed Google Scholar
Rescorla RA . Probability of shock in the presence and absence of CS in fear conditioning. J Comp Physiol Psychol 1968; 66: 1–5. ArticleCASPubMed Google Scholar
Rescorla RA, Wagner AR . A Theory of Pavlovian Conditioning: Variations in the Effectiveness of Reinforcement and Nonreinforcement. Appleton-Century-Crofts: New York, 1972. Google Scholar
Wagner AR, Rescorla RA . Inhibition in Pavlovian conditioning: application of a theory. In: Boakes RA, Halliday MS (eds). Inhibition and Learning. Academic Press: London, 1972, pp 301–336. Google Scholar
Bass MJ, Hull CL . The irradiation of a tactile conditional reflex in man. J Comparat Psychol 1934; 17: 47–65. Article Google Scholar
Dubin WJ, Levis DJ . Generalization of extinction gradients: a systematic analysis. J Exp Psychol 1974; 100: 403–412. Article Google Scholar
Hovland CI . Comments on Littman's Conditioned generalization of the galvanic skin reaction to tones. J Exp Psychol 1949; 39: 892–896. ArticleCASPubMed Google Scholar
Kasprow WJ, Schachtman TR, Cacheiro H, Miller RR . Extinction does not depend on degradation of event memories. Bull Psychon Soc 1984; 22: 95–98. Article Google Scholar
Richards RW, Sargent DM . The order of presentation of conditioned stimuli during extinction. Anim Learn Behav 1984; 11: 229–236. Article Google Scholar
Vervliet B, Vansteenwegen D, Eelen P . Generalization of extinguished skin conductance responding in human fear conditioning. Learn Mem 2004; 11: 555–558. ArticlePubMed Google Scholar
Vervliet B, Vansteenwegen D, Baeyens F, Hermans D, Eelen P . Return of fear in a human differential conditioning paradigm caused by a stimulus change after extinction. Behav Res Ther 2005; 43: 357–371. ArticlePubMed Google Scholar
Bouton ME, Bolles RC . Role of conditioned contextual stimuli in reinstatement of extinguished fear. J Exp Psychol Anim Behav Process 1979; 5: 368–378. ArticleCASPubMed Google Scholar
Bouton ME, King DA . Contextual control of conditioned fear: tests for the associative value of the context. J Exp Psychol: Anim Behav Process 1983; 9: 248–256. CAS Google Scholar
Hendry JS . Summation of undetected excitation following exinction of the CER. Anim Learn Behav 1982; 10: 476–482. Article Google Scholar
Reberg D . Compound tests for excitation in early acquisition and after prolonged extinction of conditioned suppression. Learn Motivat 1972; 3: 246–248. Article Google Scholar
Westbrook RF, Iordanova M, McNally G, Richardson R, Harris JA . Reinstatement of fear to an extinguished conditioned stimulus: two roles for context. J Exp Psychol Anim Behav Process 2002; 28: 97–110. ArticlePubMed Google Scholar
Bouton ME, Bolles RC . Contextual control of the extinction of conditioned fear. Learn Motivat 1979; 10: 455–466. Article Google Scholar
Harris JA, Jones ML, Bailey GK, Westbrook RF . Contextual control over conditioned responding in an extinction paradigm. J Exp Psychol Anim Behav Process 2000; 26: 174–185. ArticleCASPubMed Google Scholar
Bouton ME, Swartzentruber D . Analysis of the associative and occasion setting properties of contexts participating in a Pavlovian discrimination. J Exp Psychol: Anim Behav Process 1986; 12: 333–350. Google Scholar
Bouton ME . Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol Bull 1993; 114: 80–99. ArticleCASPubMed Google Scholar
Rauhut AS, Thomas BL, Ayres JJ . Treatments that weaken Pavlovian conditioned fear and thwart its renewal in rats: implications for treating human phobias. J Exp Psychol Anim Behav Process 2001; 27: 99–114. ArticleCASPubMed Google Scholar
Denniston JC, Chang RC, Miller RR . Massive extinction treatment attenuates the renewal effect. Learn Motivat 2003; 34: 68–86. Article Google Scholar
Bouton ME, Garcia-Gutierrez A, Zilski J, Moody EW . Extinction in multiple contexts does not necessarily make extinction less vulnerable to relapse. Behav Res Ther 2006; 44: 983–994. ArticlePubMed Google Scholar
Chelonis JJ, Calton JL, Hart JA, Schachtman TR . Attenuation of the renewal effect by extinction in multiple contexts. Learn Motivat 1999; 30: 1–14. Article Google Scholar
Gunther LM, Denniston JC, Miller RR . Conducting exposure treatment in multiple contexts can prevent relapse. Behav Res Ther 1998; 36: 75–91. ArticleCASPubMed Google Scholar
Neumann DL, Lipp OV, Cory SE . Conducting extinction in multiple contexts does not necessarily attenuate the renewal of shock expectancy in a fear-conditioning procedure with humans. Behav Res Ther 2007; 45: 385–394. ArticlePubMed Google Scholar
Robbins SJ . Mechanisms underlying spontaneous recovery in autoshaping. J Exp Psychol: Anim Behav Process 1990; 16: 235–249. Google Scholar
Quirk GJ . Memory for extinction of conditioned fear is long-lasting and persists following spontaneous recovery. Learn Mem 2002; 9: 402–407. ArticlePubMedPubMed Central Google Scholar
Thomas DR, Sherman L . An assessment of the role of handling cues in ‘spontaneous recovery’ after extinction. J Exp Anal Behav 1986; 46: 305–314. ArticleCASPubMedPubMed Central Google Scholar
Mackintosh NJ . A theory of attention: variations in the associability of stimuli with reinforcement. Psychol Rev 1975; 82: 276–278. Article Google Scholar
Hull CL . Principles of Behavior: An Introduction to Behavior Theory. Appleton-Century-Crofts: New York, 1943. Google Scholar
Konorski J . Conditioned Reflexes and Neuronal Organization. Cambridge University Press: London, 1948. Google Scholar
Moore JW, Stickney KJ . Goal tracking in attentional-associative networks: spatial learning and the hippocampus. Physiol Psychol 1982; 10: 202–208. Article Google Scholar
Pearce JM . A model for stimulus generalization in Pavlovian conditioning. Psychol Rev 1987; 94: 61–73. ArticleCASPubMed Google Scholar
Pearce JM . Similarity and discrimination: a selective review and a connectionist model. Psychol Rev 1994; 101: 587–607. ArticleCASPubMed Google Scholar
Pearce JM, Hall G . A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 1980; 87: 532–552. ArticleCASPubMed Google Scholar
Wagner AR . SOP: a model of automatic memory processing in animal behavior. In: Spear NE MRR (ed). Information Processing in Animals: Memory Mechanisms. Lawrence Erlbaum Associates: Hillsdale, NJ, 1981, pp 5–47. Google Scholar
Hawkins RD, Kandel ER . Is there a cell-biological alphabet for simple forms of learning? Psychol Rev 1984; 91: 375–391. ArticleCASPubMed Google Scholar
Kamprath K, Wotjak CT . Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn Mem 2004; 11: 770–786. ArticlePubMedPubMed Central Google Scholar
McSweeney FK, Swindell S . Common processes may contribute to extinction and habituation. J Gen Psychol 2002; 129: 364–400. ArticlePubMed Google Scholar
Thompson RF, Spencer WA . Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 1966; 73: 16–43. ArticleCASPubMed Google Scholar
Wagner AR . Expectancies and the priming of STM, In: Hulse SH, Fowler H, Honig W (eds). Cognitive Processes in Animal Behavior. Erlbaum: Hillsdale, 1978, pp 177–209. Google Scholar
Rescorla RA, Cunningham CL . The erasure of reinstated fear. Anim Learn Behav 1977; 5: 386–394. Article Google Scholar
Rescorla RA, Cunningham CL . Recovery of the US representation over time during extinction. Learn Memory 1978; 9: 373–391. Google Scholar
Rescorla RA . Effect of US habituation following conditioning. J Comp Physiol Psychol 1973; 82: 137–143. ArticleCASPubMed Google Scholar
Rescorla RA . Effect of inflation of the unconditioned stimulus value following conditioning. J Comp Physiol Psychol 1974; 86: 101–106. Article Google Scholar
Berman DE, Hazvi S, Stehberg J, Bahar A, Dudai Y . Conflicting processes in the extinction of conditioned taste aversion: behavioral and molecular aspects of latency, apparent stagnation, and spontaneous recovery. Learn Mem 2003; 10: 16–25. ArticlePubMedPubMed Central Google Scholar
Cain CK, Godsil BP, Jami S, Barad M . The L-type calcium channel blocker nifedipine impairs extinction, but not reduced contingency effects, in mice. Learn Mem 2005; 12: 277–284. ArticlePubMedPubMed Central Google Scholar
Robinson DE, Capaldi EJ . Spontaneous recovery following nonresponse extinction. J Comp Physiol Psychol 1958; 51: 644–646. ArticleCASPubMed Google Scholar
Gabriele A, Packard MG . Evidence of a role for multiple memory systems in behavioral extinction. Neurobiol Learn Mem 2006; 85: 289–299. ArticlePubMed Google Scholar
Myers KM, Ressler KJ, Davis M . Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learn Mem 2006; 13: 216–223. ArticlePubMedPubMed Central Google Scholar
Cammarota M, Bevilaqua LRM, Rossato JI, Ramirez M, Medina JH, Izquierdo I . Relationship between short- and long-term memory and short- and long-term extinction. Neurobiol Learn Memory 2005; 84: 25–32. Article Google Scholar
Maren S, Chang CH . Recent fear is resistant to extinction. Proc Natl Acad Sci USA 2006; 21: 18020–18025. ArticleCAS Google Scholar
Mao SC, Hsiao YH, Gean PW . Extinction training in conjunction with a partial agonist of the glycine site on the NMDA receptor erases memory trace. J Neurosci 2006; 26: 8892–8899. ArticleCASPubMedPubMed Central Google Scholar
Sotres-Bayon F, Cain CK, LeDoux JE . Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 2006; 60: 329–336. ArticlePubMed Google Scholar
Schwaerzel M, Heisenberg M, Zars T . Extinction antagonizes olfactory memory at the subcellular level. Neuron 2002; 35: 951–960. ArticleCASPubMed Google Scholar
Armony JL, Quirk GS, LeDoux JE . Differential effects of amygdala lesion on erly and late plastic components of auditory cortex spike train delay for conditioning. J Neurosci 1998; 18: 2592–2601. ArticleCASPubMedPubMed Central Google Scholar
Falls WA, Davis M . Visual cortex ablations do not prevent extinction of fear-potentiated startle using a visual conditioned stimulus. Behav Neural Biol 1993; 60: 259–270. ArticleCASPubMed Google Scholar
LeDoux JE, Romanski L, Xagoraris A . Indelibility of subcortical memories. J Cognitive Neurosci 1989; 1: 238–243. ArticleCAS Google Scholar
Quirk GJ, Armony JL, LeDoux JE . Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 1997; 19: 613–624. ArticleCASPubMed Google Scholar
Teich AH, McCabe PM, Gentile CC, Schneiderman LS, Winters RW, Liskowsky DR et al. Auditory cortex lesions prevent the extinction of Pavlovian differential heart rate conditioning to tonal stimuli in rabbits. Brain Res 1989; 480: 210–218. ArticleCASPubMed Google Scholar
McNally GP . Facilitation of fear extinction by midbrain periaqueductal gray infusions of RB101(S), an inhibitor of enkephalin-degrading enzymes. Behav Neurosci 2005; 119: 1672–1677. ArticleCASPubMed Google Scholar
McNally GP, Cole S . Opioid receptors in the midbrain periaqueductal gray regulate prediction errors during pavlovian fear conditioning. Behav Neurosci 2006; 120: 313–323. ArticleCASPubMed Google Scholar
McNally GP, Pigg M, Weidemann G . Opioid receptors in the midbrain periaqueductal gray regulate extinction of pavlovian fear conditioning. J Neurosci 2004; 24: 6912–6919. ArticleCASPubMedPubMed Central Google Scholar
Heldt SA, Falls WA . Destruction of the inferior colliculus disrupts the production and inhibition of fear conditioned to an acoustic stimulus. Behav Brain Res 2003; 144: 175–185. ArticlePubMed Google Scholar
Thomas E . Forebrain mechanisms in the relief of fear: the role of the lateral septum. Psychobiology 1988; 16: 36–44. Google Scholar
Yadin E, Thomas E . Septal correlates of conditioned inhibition and excitation in rats. J Comp Physiol Psychol 1981; 95: 331–340. ArticleCASPubMed Google Scholar
Yadin E, Thomas E . Stimulation of the lateral septum attenuates immobilization-induced stress ulcers. Physiol Behav 1996; 59: 883–886. ArticleCASPubMed Google Scholar
Yadin E, Thomas E, Grishkat HL, Strickland CE . The role of the lateral septum in anxiolysis. Physiol Behav 1993; 53: 1077–1083. ArticleCASPubMed Google Scholar
Waddell J, Morris RW, Bouton ME . Effects of bed nucleus of the stria terminalis lesions on conditioned anxiety: aversive conditioning with long-duration conditional stimuli and reinstatement of extinguished fear. Behav Neurosci 2006; 120: 324–336. ArticlePubMed Google Scholar
Josselyn SA, Falls WA, Gewirtz JC, Pistell P, Davis M . The nucleus accumbens is not critically involved in mediating the effects of a safety signal on behavior. Neuropsychopharmacology 2005; 30: 17–26. ArticlePubMed Google Scholar
Rogan MT, Leon KS, Perez DL, Kandel ER . Distinct neural signatures for safety and danger in the amygdala and striatum of the mouse. Neuron 2005; 46: 309–320. ArticleCASPubMed Google Scholar
Amorapanth P, LeDoux J, Nader K . Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nat Neurosci 2000; 3: 74–79. ArticleCASPubMed Google Scholar
Anglada-Figueroa D, Quirk GJ . Lesions of the basal amygdala block expression of conditioned fear but not extinction. J Neurosci 2005; 25: 9680–9685. ArticleCASPubMedPubMed Central Google Scholar
Goosens KA, Maren S . Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn Mem 2001; 8: 148–155. ArticleCASPubMedPubMed Central Google Scholar
Nader K, Majidishad P, Amorapanth P, LeDoux JE . Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learn Mem 2001; 8: 156–163. ArticleCASPubMedPubMed Central Google Scholar
Akirav I, Raizel H, Maroun M . Enhancement of conditioned fear extinction by infusion of the GABA agonist muscimol into the rat prefrontal cortex and amygdala. Eur J Neurosci 2006; 23: 758–764. ArticlePubMed Google Scholar
Muller J, Corodimas KP, Fridel Z, LeDoux JE . Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav Neurosci 1997; 111: 683–691. ArticleCASPubMed Google Scholar
Berlau DJ, McGaugh JL . Enhancement of extinction memory consolidation: The role of the noradrenergic and GABAergic systems within the basolateral amygdala. Neurobiol Learn Mem 2006; 86: 123–132. ArticleCASPubMed Google Scholar
Lalumiere RT, McGaugh JL . Memory enhancement induced by post-training intrabasolateral amygdala infusions of beta-adrenergic or muscarinic agonists requires activation of dopamine receptors: Involvement of right, but not left, basolateral amygdala. Learn Mem 2005; 12: 527–532. ArticlePubMedPubMed Central Google Scholar
Quirk GJ, Repa JC, LeDoux JE . Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 1995; 15: 1029–1039. ArticleCASPubMed Google Scholar
Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y, LeDoux JE . Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 2001; 4: 724–731. ArticleCASPubMed Google Scholar
Hernandez LL, Powell DA, Gibbs CM . Amygdaloid central nucleus neuronal activity accompanying pavlovian cardiac conditioning: effects of naloxone. Behav Brain Res 1990; 41: 71–79. ArticleCASPubMed Google Scholar
McEchron MD, McCabe PM, Green EJ, Llabre MM, Schniederman N . Simultaneous single unit recording in the medial nucleus of the medial geniculate nucleus and amygdaloid central nucleus throughout habituation, acquisition, and extinction of the rabbit's classically conditioned heart rate. Brain Res 1995; 682: 157–166. ArticleCASPubMed Google Scholar
Gottfried JA, Dolan RJ . Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat Neurosci 2004; 7: 1144–1152. ArticleCASPubMed Google Scholar
Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ . Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn Affect Behav Neurosci 2004; 4: 317–325. ArticlePubMed Google Scholar
LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA . Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 1998; 20: 937–945. ArticleCASPubMed Google Scholar
Phelps EA, Delgado MR, Nearing KI, LeDoux JE . Extinction learning in humans: role of the amygdala and vmPFC. Neuron 2004; 43: 897–905. ArticleCASPubMed Google Scholar
Hobin JA, Goosens KA, Maren S . Context-dependent neuronal activity in the lateral amygdala represents fear memories after extinction. J Neurosci 2003; 23: 8410–8416. ArticleCASPubMedPubMed Central Google Scholar
Izquierdo I, Medina JH . Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 1997; 68: 285–316. ArticleCASPubMed Google Scholar
Kim JJ, Fanselow MS . Modality-specific retrograde amnesia of fear. Science 1992; 256: 675–677. ArticleCASPubMed Google Scholar
Phillips RG, LeDoux JE . Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992; 106: 274–285. ArticleCASPubMed Google Scholar
Rudy JW, Huff NC, Matus-Amat P . Understanding contextual fear conditioning: insights from a two-process model. Neurosci Biobehav Rev 2004; 28: 675–685. ArticleCASPubMed Google Scholar
Wilson A, Brooks D, Bouton ME . The role of the rat hippocampal system in several effects of context extincition. Behav Neurosci 1995; 109: 828–836. ArticleCASPubMed Google Scholar
Frohardt R, Guarraci FA, Bouton ME . The effects of neurotoxic hippocampal lesions on two effects of context following fear extinction. Behav Neurosci 2000; 114: 227–240. ArticleCASPubMed Google Scholar
Ji J, Maren S . Electrolytic lesions of the dorsal hippocampus disrupt renewal of conditional fear after extinction. Learn Mem 2005; 12: 270–276. ArticlePubMedPubMed Central Google Scholar
Corcoran KA, Desmond TJ, Frey KA, Maren S . Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J Neurosci 2005; 25: 8978–8987. ArticleCASPubMedPubMed Central Google Scholar
Corcoran KA, Maren S . Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. J Neurosci 2001; 21: 1720–1726. ArticleCASPubMedPubMed Central Google Scholar
Corcoran KA, Maren S . Factors regulating the effects of hippocampal inactivation on renewal of conditional fear after extinction. Learn Mem 2004; 11: 598–603. ArticlePubMedPubMed Central Google Scholar
Hobin JA, Ji J, Maren S . Ventral hippocampal muscimol disrupts context-specific fear memory retrieval after extinction in rats. Hippocampus 2006; 16: 174–182. ArticleCASPubMed Google Scholar
Wilson A, Brooks DC, Bouton ME . The role of the rat hippocampal system in several effects of context in extinction. Behav Neurosci 1995; 109: 828–836. ArticleCASPubMed Google Scholar
Farinelli M, Deschaux O, Hugues S, Thevenet A, Garcia R . Hippocampal train stimulation modulates recall of fear extinction independently of prefrontal cortex synaptic plasticity and lesions. Learn Mem 2006; 13: 329–334. ArticlePubMedPubMed Central Google Scholar
Hugues S, Chessel A, Lena I, Marsault R, Garcia R . Prefrontal induction of PD098059 immediately after fear extinction training blocks extinction-associated prefrontal synaptic plasticity and decreases prefrontal ERK2 phosphorylation. Synapse 2006; 60: 280–287. ArticleCASPubMed Google Scholar
Garcia R, Chang CH, Maren S . Electrolytic lesions of the medial prefrontal cortex do not interfere with long-term memory of extinction of conditioned fear. Learn Mem 2006; 13: 14–17. ArticlePubMedPubMed Central Google Scholar
Milad MR, Quirk GJ . Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002; 420: 70–74. ArticleCASPubMed Google Scholar
Herry C, Garcia R . Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J Neurosci 2002; 22: 577–583. ArticleCASPubMedPubMed Central Google Scholar
Herry C, Garcia R . Behavioral and paired-pulse facilitation analyses of long-lasting depression at excitatory synapses in the medial prefrontal cortex in mice. Behav Brain Res 2003; 146: 89–96. ArticlePubMed Google Scholar
Herry C, Mons N . Resistance to extinction is associated with impaired immediate early gene induction in medial prefrontal cortex and amygdala. Eur J Neurosci 2004; 20: 781–790. ArticlePubMed Google Scholar
Herry C, Vouimba RM, Garcia R . Plasticity in the mediodorsal thalamo-prefrontal cortical transmission in behaving mice. J Neurophysiol 1999; 82: 2827–2832. ArticleCASPubMed Google Scholar
Milad MR, Vidal-Gonzalez I, Quirk GJ . Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci 2004; 118: 389–394. ArticleCASPubMed Google Scholar
Barrett D, Shumake J, Jones D, Gonzalez-Lima F . Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response. J Neurosci 2003; 23: 5740–5749. ArticleCASPubMedPubMed Central Google Scholar
Milad MR, Quinn BT, Pitman RK, Orr SP, Fischl B, Rauch SL . Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc Natl Acad Sci USA 2005; 102: 10706–10711. ArticleCASPubMedPubMed Central Google Scholar
Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ . Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 2004; 24: 5704–5710. ArticleCASPubMedPubMed Central Google Scholar
Morrow BA, Elsworth JD, Inglis FM, Roth RH . An antisense oligonucleotide reverses the footshock-induced expression of fos in the rat medial prefrontal cortex and the subsequent expression of conditioned fear-induced immobility. J Neurosci 1999; 19: 5666–5673. ArticleCASPubMedPubMed Central Google Scholar
Pfeiffer UJ, Fendt M . Prefrontal dopamine D4 receptors are involved in encoding fear extinction. Neuroreport 2006; 17: 847–850. ArticleCASPubMed Google Scholar
Hugues S, Deschaux O, Garcia R . Postextinction infusion of a mitogen-activated protein kinase inhibitor into the medial prefrontal cortex impairs memory of the extinction of conditioned fear. Learn Mem 2004; 11: 540–543. ArticlePubMed Google Scholar
McDonald AJ, Mascagni F, Guo L . Projections of the medial and lateral prefrontal cortices to the amygdala: a phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 1996; 71: 55–75. ArticleCASPubMed Google Scholar
Sesack SR, Deutch AY, Roth RH, Bunney BS . Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 1989; 290: 213–242. ArticleCASPubMed Google Scholar
Vertes RP . Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 2004; 51: 32–58. ArticleCASPubMed Google Scholar
Quirk GJ, Likhtik E, Pelletier JG, Pare D . Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 2003; 23: 8800–8807. ArticleCASPubMedPubMed Central Google Scholar
Rosenkranz JA, Grace AA . Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 2002; 22: 324–337. ArticleCASPubMedPubMed Central Google Scholar
Rosenkranz JA, Moore H, Grace AA . The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 2003; 23: 11054–11064. ArticleCASPubMedPubMed Central Google Scholar
Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Pare D . Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala. Neuroscience 2005; 132: 943–953. ArticleCASPubMed Google Scholar
Nitecka L, Ben-Ari Y . Distribution of GABA-like immunoreactivity in the rat amygdaloid complex. J Comp Neurol 1987; 266: 45–55. ArticleCASPubMed Google Scholar
Pare D, Smith Y . The intercalated cell masses project to the central and medial nuclei of the amygdala in cats. Neuroscience 1993; 57: 1077–1090. ArticleCASPubMed Google Scholar
Royer S, Martina M, Pare D . An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J Neurosci 1999; 19: 10575–10583. ArticleCASPubMedPubMed Central Google Scholar
Royer S, Pare D . Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 2002; 115: 455–462. ArticleCASPubMed Google Scholar
Pare D, Quirk GJ, Ledoux JE . New vistas on amygdala networks in conditioned fear. J Neurophysiol 2004; 92: 1–9. ArticlePubMed Google Scholar
Morgan MA, LeDoux JE . Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 1995; 109: 681–688. ArticleCASPubMed Google Scholar
Morgan MA, LeDoux JE . Contribution of ventrolateral prefrontal cortex to the acquistion and extinction of conditioned fear in rats. Neurobiol Learn Memory 1999; 72: 244–251. ArticleCAS Google Scholar
Morgan MA, Romanski LM, LeDoux JE . Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 1993; 163: 109–113. ArticleCASPubMed Google Scholar
Quirk GJ, Russo GK, Barron JL, Lebron K . The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 2000; 20: 6225–6231. ArticleCASPubMedPubMed Central Google Scholar
Gewirtz JC, Falls WA, Davis M . Normal conditioned inhibition and extinction of freezing and fear potentiated startle following electrolytic lesions of medial prefrontal cortex. Behav Neurosci 1997; 111: 712–726. ArticleCASPubMed Google Scholar
Vouimba RM, Garcia R, Baudry M, Thompson RF . Potentiation of conditioned freezing following dorsomedial prefrontal cortex lesions does not interfere with fear reduction in mice. Behav Neurosci 2000; 114: 720–724. ArticleCASPubMed Google Scholar
Morrow BA, Elsworth JD, Rasmusson AM, Roth RH . The role of mesoprefrontal dopamine neurons in the acquisition and expression of conditioned fear in the rat. Neuroscience 1999; 92: 553–564. ArticleCASPubMed Google Scholar
Morgan MA, Schulkin J, LeDoux JE . Ventral medial prefrontal cortex and emotional perseveration: the memory for prior extinction training. Behav Brain Res 2003; 146: 121–130. ArticlePubMed Google Scholar
Harris JA, Westbrook RF . Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology 1998; 140: 105–115. ArticleCASPubMed Google Scholar
Chhatwal JP, Myers KM, Ressler KJ, Davis M . Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J Neurosci 2005; 25: 502–506. ArticleCASPubMedPubMed Central Google Scholar
Ressler KJ, Paschall GY, Zhao XL, Davis M . Induction of synaptic plasticity genes in a distributed neural circuit during consolidation of conditioned fear learning. J Neurosci 2002; 22: 7892–7903. ArticleCASPubMedPubMed Central Google Scholar
Castellano C, McGaugh JL . Retention enhancement with post-training picrotoxin: lack of state dependency. Behav Neural Biol 1989; 51: 165–170. ArticleCASPubMed Google Scholar
Pereira ME, Dalmaz C, Rosat RM, Izquierdo I . Diazepam blocks the interfering effect of post-training behavioral manipulations on retention of a shuttle avoidance task. Psychopharmacology (Berlin) 1988; 94: 402–404. ArticleCAS Google Scholar
Pereira ME, Rosat R, Huang CH, Godoy MG, Izquierdo I . Inhibition by diazepam of the effect of additional training and of extinction on the retention of shuttle avoidance behavior in rats. Behav Neurosci 1989; 103: 202–205. ArticleCASPubMed Google Scholar
Bouton ME, Kenney FA, Rosengard C . State-dependent fear extinction with two benzodiazepine tranquilizers. Behav Neurosci 1990; 104: 44–55. ArticleCASPubMed Google Scholar
Baker JD, Azorlosa JL . The NMDA antagonist MK-801 blocks the extinction of Pavlovian fear conditioning. Behav Neurosci 1996; 110: 618–620. ArticleCASPubMed Google Scholar
Falls WA, Miserendino MJ, Davis M . Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 1992; 12: 854–863. ArticleCASPubMedPubMed Central Google Scholar
Lee H, Kim J . Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J Neurosci 1998; 18: 8444–8454. ArticleCASPubMedPubMed Central Google Scholar
Lin CH, Yeh SH, Lu HY, Gean PW . The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. J Neurosci 2003; 23: 8310–8317. ArticleCASPubMedPubMed Central Google Scholar
Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S . Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 2004; 24: 4787–4795. ArticleCASPubMedPubMed Central Google Scholar
Szapiro G, Vianna MR, McGaugh JL, Medina JH, Izquierdo I . The role of NMDA glutamate receptors, PKA, MAPK, and CAMKII in the hippocampus in extinction of conditioned fear. Hippocampus 2003; 13: 53–58. ArticleCASPubMed Google Scholar
Santini E, Muller RU, Quirk GJ . Consolidation of extinction learning involves transfer from NMDA- independent to NMDA-dependent memory. J Neurosci 2001; 21: 9009–9017. ArticleCASPubMedPubMed Central Google Scholar
Bevilaqua LR, Bonini JS, Rossato JI, Izquierdo LA, Cammarota M, Izquierdo I . The entorhinal cortex plays a role in extinction. Neurobiol Learn Mem 2006; 85: 192–197. ArticleCASPubMed Google Scholar
Walker DL, Ressler KJ, Lu KT, Davis M . Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 2002; 22: 2343–2351. ArticleCASPubMedPubMed Central Google Scholar
Yang YL, Lu KT . Facilitation of conditioned fear extinction by D-cycloserine is mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase cascades and requires de novo protein synthesis in basolateral nucleus of amygdala. Neuroscience 2005; 134: 247–260. ArticleCASPubMed Google Scholar
Ledgerwood L, Richardson R, Cranney J . Effects of D-cycloserine on extinction of conditioned freezing. Behav Neurosci 2003; 117: 341–349. ArticleCASPubMed Google Scholar
Ledgerwood L, Richardson R, Cranney J . D-cycloserine and the facilitation of extinction of conditioned fear: consequences for reinstatement. Behav Neurosci 2004; 118: 505–513. ArticlePubMed Google Scholar
Ledgerwood L, Richardson R, Cranney J . D-cycloserine facilitates extinction of learned fear: effects on reacquisition and generalized extinction. Biol Psychiatry 2005; 57: 841–847. ArticleCASPubMed Google Scholar
Parnas AS, Weber M, Richardson R . Effects of multiple exposures to D-cycloserine on extinction of conditioned fear in rats. Neurobiol Learn Mem 2005; 83: 224–231. ArticleCASPubMed Google Scholar
Kim M, Campeau S, Falls WA, Davis M . Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle. Behav Neural Biol 1993; 59: 5–8. ArticleCASPubMed Google Scholar
Masugi M, Yokoi M, Shigemoto R, Muguruma K, Watanabe Y, Sansig G et al. Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. J Neurosci 1999; 19: 955–963. ArticleCASPubMedPubMed Central Google Scholar
Grueter BA, Winder DG . Group II and III metabotropic glutamate receptors suppress excitatory synaptic transmission in the dorsolateral bed nucleus of the stria terminalis. Neuropsychopharmacology 2005; 30: 1302–1311. ArticleCASPubMed Google Scholar
Callaerts-Vegh Z, Beckers T, Ball SM, Baeyens F, Callaerts PF, Cryan JF et al. Concomitant deficits in working memory and fear extinction are functionally dissociated from reduced anxiety in metabotropic glutamate receptor 7-deficient mice. J Neurosci 2006; 26: 6573–6582. ArticleCASPubMedPubMed Central Google Scholar
Borowski TB, Kokkinidis L . Cocaine preexposure sensitizes conditioned fear in a potentiated acoustic startle paradigm. Pharmacol Biochem Behav 1994; 49: 935–942. ArticleCASPubMed Google Scholar
Borowski TB, Kokkinidis L . Contribution of ventral tegmental area dopamine neurons to expression of conditioned fear: effects of electrical stimulation, excitotoxin lesions, and quinpirole infusion on potentiated startle in rats. Behav Neurosci 1996; 110: 1349–1364. ArticleCASPubMed Google Scholar
Nader K, LeDoux J . The dopaminergic modulation of fear: Quinpirole impairs the recall of emotional memories in rats. Behav Neurosci 1999; 113: 152–165. ArticleCASPubMed Google Scholar
Greba Q, Gifkins A, Kokkinidis L . Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Brain Res 2001; 899: 218–226. ArticleCASPubMed Google Scholar
Greba Q, Kokkinidis L . Peripheral and intraamygdalar administration of the dopamine D1 receptor antagonist SCH 23390 blocks fear-potentiated startle but not shock reactivity or the shock sensitization of acoustic startle. Behav Neurosci 2000; 114: 262–272. ArticleCASPubMed Google Scholar
Guarraci FA, Frohardt RJ, Kapp BS . Amygdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Res 1999; 827: 28–40. ArticleCASPubMed Google Scholar
Willick ML, Kokkinides L . Cocaine enhances the expression of fear-potentiated startle: Evaluation of state-dependent extinction and the shock-sensitization of acoustic startle. Behav Neurosci 1995; 109: 929–938. ArticleCASPubMed Google Scholar
Borowski TB, Kokkinides L . The effects of cocaine, amphetamine, and the dopamine D1 receptor agonist SKF 38393 on fear extinction as measured with potentiated startle: Implications for psychomotor stimulant psychosis. Behav Neurosci 1998; 112: 952–965. ArticleCASPubMed Google Scholar
Ponnusamy R, Nissim HA, Barad M . Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice. Learn Mem 2005; 12: 399–406. ArticlePubMedPubMed Central Google Scholar
El-Ghundi M, O'Dowd BF, George SR . Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res 2001; 892: 86–93. ArticleCASPubMed Google Scholar
Bissiere S, Humeau Y, Luthi A . Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci 2003; 6: 587–592. ArticleCASPubMed Google Scholar
Kroner S, Rosenkranz JA, Grace AA, Barrionuevo G . Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 2005; 93: 1598–1610. ArticleCASPubMed Google Scholar
Marowsky A, Yanagawa Y, Obata K, Vogt KE . A specialized subclass of interneurons mediates dopaminergic facilitation of amygdala function. Neuron 2005; 48: 1025–1037. ArticleCASPubMed Google Scholar
Rosenkranz JA, Grace AA . Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo. J Neurosci 1999; 19: 11027–11039. ArticleCASPubMedPubMed Central Google Scholar
Ferron A, Thierry AM, Le Douarin C, Glowinski J . Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Res 1984; 302: 257–265. ArticleCASPubMed Google Scholar
Gulledge AT, Jaffe DB . Dopamine decreases the excitability of layer V pyramidal cells in the rat prefrontal cortex. J Neurosci 1998; 18: 9139–9151. ArticleCASPubMedPubMed Central Google Scholar
Mantz J, Milla C, Glowinski J, Thierry AM . Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex. Neuroscience 1988; 27: 517–526. ArticleCASPubMed Google Scholar
Pirot S, Godbout R, Mantz J, Tassin JP, Glowinski J, Thierry AM . Inhibitory effects of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 1992; 49: 857–865. ArticleCASPubMed Google Scholar
Rosenkranz JA, Grace AA . Dopamine modulates intracellular electrophysiological correlates of conditioning in the basolateral amygdala of rats. Soc Neurosci Abstracts 2001; 27: 2540. Google Scholar
Prado-Alcala RA, Haiek M, Rivas S, Roldan-Roldan G, Quirarte GL . Reversal of extinction by scopolamine. Physiol Behav 1994; 56: 27–30. ArticleCASPubMed Google Scholar
Roldan G, Cobos-Zapiain G, Quirarte GL, Prado-Alcala RA . Dose- and time-dependent scopolamine-induced recovery of an inhibitory avoidance response after its extinction in rats. Behav Brain Res 2001; 121: 173–179. ArticleCASPubMed Google Scholar
Duran-Arevalo M, Cruz-Morales SE, Prado-Alcala RA . Is acetylcholine involved in memory consolidation of over-reinforced learning. Brain Res Bull 1990; 24: 725–727. ArticleCASPubMed Google Scholar
Kim JJ, Krupa DJ, Thompson RF . Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science 1998; 279: 570–573. ArticleCASPubMed Google Scholar
Waelti P, Dickinson A, Schultz W . Dopamine responses comply with basic assumptions of formal learning theory. Nature 2001; 412: 43–48. ArticleCASPubMed Google Scholar
Kim JJ, Thompson RF . Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci 1997; 20: 177–181. ArticleCASPubMed Google Scholar
Fanselow MS . Naloxone and pavlovian fear conditioning. Learn Motivat 1981; 12: 398–419. Article Google Scholar
Fanselow MS . Opiate modulation of the active and inactive components of the postshock reaction: parallels between naloxone pretreatment and shock intensity. Behav Neurosci 1984; 98: 269–277. ArticleCASPubMed Google Scholar
Fanselow MS, Bolles RC . Naloxone and shock-elicited freezing in the rat. J Comp Neurol 1979; 93: 736–744. CAS Google Scholar
Fanselow MS, Calcagnetti DJ, Helmstetter FJ . Peripheral versus intracerebroventricular administration of quaternary naltrexone and the enhancement of Pavlovian conditioning. Brain Res 1988; 444: 147–152. ArticleCASPubMed Google Scholar
Fanselow MS . Conditioned fear-induced opiate analgesia: a competing motivational state theory of stress analgesia. Ann NY Acad Sci 1986; 467: 40–54. ArticleCASPubMed Google Scholar
De Wied D, Kovacs GL, Bohus B, Van Ree JM, Greven HM . Neuroleptic activity of the neuropeptide beta-LPH62-77 ([Des-Tyr1]gamma-endorphin; DT gamma E). Eur J Pharmacol 1978; 49: 427–436. ArticleCASPubMed Google Scholar
Le Moal M, Koob GF, Bloom FE . Endorphins and extinction: differential actions on appetitive and adversive tasks. Life Sci 1979; 24: 1631–1636. ArticleCASPubMed Google Scholar
Vigorito M, Ayres JJ . Effect of naloxone on conditioned suppression in rats. Behav Neurosci 1987; 101: 576–586. ArticleCASPubMed Google Scholar
McNally GP, Westbrook RF . Opioid receptors regulate the extinction of Pavlovian fear conditioning. Behav Neurosci 2003; 117: 1292–1301. ArticleCASPubMed Google Scholar
McNally GP, Lee BW, Chiem JY, Choi EA . The midbrain periaqueductal gray and fear extinction: opioid receptor subtype and roles of cyclic AMP, protein kinase A, and mitogen-activated protein kinase. Behav Neurosci 2005; 119: 1023–1033. ArticlePubMed Google Scholar
Kamin LJ . Attention-like processes in classical conditioning. In: Jones M (ed). Miami Symposium on the Prediction of Behavior: Aversive Stimulation. University of Miami Press: Miami, 1968, pp 9–31. Google Scholar
McNally GP, Pigg M, Weidemann G . Blocking, unblocking, and overexpectation of fear: a role for opioid receptors in the regulation of Pavlovian association formation. Behav Neurosci 2004; 118: 111–120. ArticleCASPubMed Google Scholar
Rescorla RA . Reductions in effectiveness after prior excitatiory conditioning in the rat. Learn Motivat 1970; 1: 372–381. Article Google Scholar
LeDoux JE, Iwata J, Cicchetti P, Reis DJ . Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 1988; 8: 2517–2529. ArticleCASPubMedPubMed Central Google Scholar
Amorapanth P, Nader K, LeDoux JE . Lesions of periaqueductal gray dissociate-conditioned freezing from conditioned suppression behavior in rats. Learn Memory 1999; 6: 491–499. ArticleCAS Google Scholar
Castellano C, Rossi-Arnaud C, Cestari V, Costanzi M . Cannabinoids and memory: animal studies. Curr Drug Targets CNS Neurol Disord 2003; 2: 389–402. ArticleCASPubMed Google Scholar
Mailleux P, Vanderhaeghen JJ . Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience 1992; 48: 655–668. ArticleCASPubMed Google Scholar
McDonald AJ, Mascagni F . Localization of the CB1 type cannabinoid receptor in the rat basolateral amygdala: high concentrations in a subpopulation of cholecystokinin-containing interneurons. Neuroscience 2001; 107: 641–652. ArticleCASPubMed Google Scholar
Moldrich G, Wenger T . Localization of the CB1 cannabinoid receptor in the rat brain. An immunohistochemical study. Peptides 2000; 21: 1735–1742. ArticleCASPubMed Google Scholar
Marsicano G, Lutz B . Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 1999; 11: 4213–4225. ArticleCASPubMed Google Scholar
Azad SC, Eder M, Marsicano G, Lutz B, Zieglgansberger W, Rammes G . Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse. Learn Mem 2003; 10: 116–128. ArticlePubMedPubMed Central Google Scholar
Azad SC, Monory K, Marsicano G, Cravatt BF, Lutz B, Zieglgansberger W et al. Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J Neurosci 2004; 24: 9953–9961. ArticleCASPubMedPubMed Central Google Scholar
Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 1999; 19: 4544–4558. ArticleCASPubMedPubMed Central Google Scholar
Marowsky A, Fritschy JM, Vogt KE . Functional mapping of GABA A receptor subtypes in the amygdala. Eur J Neurosci 2004; 20: 1281–1289. ArticlePubMed Google Scholar
Pistis M, Perra S, Pillolla G, Melis M, Gessa GL, Muntoni AL . Cannabinoids modulate neuronal firing in the rat basolateral amygdala: evidence for CB1- and non-CB1-mediated actions. Neuropharmacology 2004; 46: 115–125. ArticleCASPubMed Google Scholar
Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002; 418: 530–534. ArticleCASPubMed Google Scholar
Chhatwal JP, Davis M, Maguschak KA, Ressler KJ . Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 2005; 30: 516–524. ArticleCASPubMed Google Scholar
Finn DP, Beckett SR, Richardson D, Kendall DA, Marsden CA, Chapman V . Evidence for differential modulation of conditioned aversion and fear-conditioned analgesia by CB1 receptors. Eur J Neurosci 2004; 20: 848–852. ArticleCASPubMed Google Scholar
Lin HC, Mao SC, Gean PW . Effects of intra-amygdala infusion of CB1 receptor agonists on the reconsolidation of fear-potentiated startle. Learn Mem 2006; 13: 316–321. ArticleCASPubMedPubMed Central Google Scholar
Kamprath K, Marsicano G, Tang J, Monory K, Bisogno T, Di Marzo V et al. Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci 2006; 26: 6677–6686. ArticleCASPubMedPubMed Central Google Scholar
Hagan JJ . Effects of lysine vasopressin and response prevention on avoidance responding in extinction. Behav Neural Biol 1982; 36: 204–210. ArticleCASPubMed Google Scholar
Koob GF, Dantzer R, Bluthe R, Lebrun C, Bloom FE, LeMoal M . Central injections of arginine vasopressin prolong extinction of active avoidance. Peptides 1986; 7: 213–218. ArticleCASPubMed Google Scholar
van Wimersma TB, de Weid D . Effects of systemic and intracerebral administration of two opposite acting ACTH-related peptides on extinction of conditioned avoidance behavior. Neuroendocrinology 1971; 7: 291–301. Article Google Scholar
Ader R, de Wied D . Effects of lysine vasopressin on passive avoidance learning. Psychonom Sci 1972; 29: 46–48. Article Google Scholar
Hernandez LL, Powell DA . Vasopressin analog delays extinction of classically conditioned bradycardia. Peptides 1983; 4: 37–41. ArticleCASPubMed Google Scholar
De Wied D . The Influence of the posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats. Int J Neuropharmacol 1965; 4: 157–167. ArticleCASPubMed Google Scholar
Lashley RL, Richardson R, Riccio DC . ACTH- and noncontingent footshock-induced recovery of an extinguished passive avoidance response. Physiol Behav 1987; 40: 677–680. ArticleCASPubMed Google Scholar
Richardson R, Riccio DC, Devine L . ACTH-induced recovery of extinguished avoidance responding. Physiol Psychol 1984; 12: 184–192. ArticleCAS Google Scholar
Ahlers ST, Richardson R . Administration of dexamethasone prior to training blocks ACTH-induced recovery of an extinguished avoidance response. Behav Neurosci 1985; 99: 760–764. ArticleCASPubMed Google Scholar
Ahlers ST, Richardson R, West C, Riccio DC . ACTH produces long-lasting recovery following partial extinction of an active avoidance response. Behav Neural Biol 1989; 51: 102–107. ArticleCASPubMed Google Scholar
Kovacs GL, Bohus B, Versteeg DH, de Kloet ER, de Wied D . Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Res 1979; 175: 303–314. ArticleCASPubMed Google Scholar
van Wimersma Greidanus TB, Bohus B, deWied D . Differential localization of the influence of lysine vasopressin and of ACTH 4-10 on avoidance behavior: a study in rats baring lesions in the parafasicular nuclei. Neuroendocrinology 1974; 14: 280–288. ArticleCAS Google Scholar
Osborne B, Silverhart T, Markgraf C, Seggie J . Effects of fornix transection and pituitary-adrenal modulation on extinction behavior. Behav Neurosci 1987; 101: 504–512. ArticleCASPubMed Google Scholar
Bohus B, Endroeczi E . The Influence of Pituitary-Adrenocortical Function on the Avoiding Conditioned Reflex Activity in Rats. Acta Physiol Acad Sci Hung 1965; 26: 183–189. CASPubMed Google Scholar
Izquierdo I, Pereira EM . Post-training memory facilitation blocks extinction but not retroactive interference. Behav Neural Biol 1989; 51: 108–113. ArticleCASPubMed Google Scholar
Bohus B, Nyaas C, Endroczi E . Effects of adrenocoticotropic hormone on avoidance behavior of intact and adrenalectomized rats. Int J Neuropharmacol 1967; 7: 307–314. Article Google Scholar
McGaugh JL, Roozendaal B . Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 2002; 12: 205–210. ArticleCASPubMed Google Scholar
Cahill L, Haier RJ, Fallon J, Alkire MT, Tang C, Keator D et al. Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc Natl Acad Sci USA 1996; 93: 8016–8021. ArticleCASPubMedPubMed Central Google Scholar
Barrett D, Gonzalez-Lima F . Behavioral effects of metyrapone on Pavlovian extinction. Neurosci Lett 2004; 371: 91–96. ArticleCASPubMed Google Scholar
Yang YL, Chao PK, Lu KT . Systemic and intra-amygdala administration of glucocorticoid agonist and antagonist modulate extinction of conditioned fear. Neuropsychopharmacology 2006; 31: 912–924. ArticleCASPubMed Google Scholar
Rothbaum BO, Davis M . Applying learning principles to the treatment of post-trauma reactions. Ann NY Acad Sci 2003; 1008: 112–121. ArticlePubMed Google Scholar
Guthrie RM, Bryant RA . Extinction learning before trauma and subsequent posttraumatic stress. Psychosom Med 2006; 68: 307–311. ArticlePubMed Google Scholar
Yehuda R . Biology of posttraumatic stress disorder. J Clin Psychiatry 2001; 62 (Suppl 17): 41–46. CASPubMed Google Scholar
Aerni A, Traber R, Hock C, Roozendaal B, Schelling G, Papassotiropoulos A et al. Low-dose cortisol for symptoms of posttraumatic stress disorder. Am J Psychiatry 2004; 161: 1488–1490. ArticlePubMed Google Scholar
Soravia LM, Heinrichs M, Aerni A, Maroni C, Schelling G, Ehlert U et al. Glucocorticoids reduce phobic fear in humans. Proc Natl Acad Sci USA 2006; 103: 5585–5590. ArticleCASPubMedPubMed Central Google Scholar
Roozendaal B, Okuda S, de Quervain DJ, McGaugh JL . Glucocorticoids interact with emotion-induced noradrenergic activation in influencing different memory functions. Neuroscience 2006; 138: 901–910. ArticleCASPubMed Google Scholar
Davies MF, Tsui J, Flannery JA, Li X, DeLorey TM, Hoffman BB . Activation of alpha2 adrenergic receptors suppresses fear conditioning: expression of c-Fos and phosphorylated CREB in mouse amygdala. Neuropsychopharmacology 2004; 29: 229–239. ArticleCASPubMed Google Scholar
LaLumiere RT, Buen TV, McGaugh JL . Post-training intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. J Neurosci 2003; 23: 6754–6758. ArticleCASPubMedPubMed Central Google Scholar
Debiec J, Ledoux JE . Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 2004; 129: 267–272. ArticleCASPubMed Google Scholar
Cain CK, Blouin AM, Barad M . Adrenergic transmission facilitates extinction of conditional fear in mice. Learn Mem 2004; 11: 179–187. ArticlePubMedPubMed Central Google Scholar
Cain CK, Blouin AM, Barad M . Temporally massed CS presentations generate more fear extinction than spaced presentations. J Exp Psychol Anim Behav Process 2003; 29: 323–333. ArticlePubMed Google Scholar
Ouyang M, Thomas SA . A requirement for memory retrieval during and after long-term extinction learning. Proc Natl Acad Sci USA 2005; 102: 9347–9352. ArticleCASPubMedPubMed Central Google Scholar
Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA . A distinct role for norepinephrine in memory retrieval. Cell 2004; 117: 131–143. ArticleCASPubMed Google Scholar
Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T . Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 1995; 92: 8856–8860. ArticleCASPubMedPubMed Central Google Scholar
Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER . Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 1996; 16: 1137–1145. ArticleCASPubMed Google Scholar
Alonso M, Vianna MR, Depino AM, Mello e Souza T, Pereira P, Szapiro G et al. BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 2002; 12: 551–560. ArticleCASPubMed Google Scholar
Liu IY, Lyons WE, Mamounas LA, Thompson RF . Brain-derived neurotrophic factor plays a critical role in contextual fear conditioning. J Neurosci 2004; 24: 7958–7963. ArticleCASPubMedPubMed Central Google Scholar
Rattiner LM, Davis M, French CT, Ressler KJ . Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J Neurosci 2004; 24: 4796–4806. ArticleCASPubMedPubMed Central Google Scholar
Chhatwal JP, Stanek-Rattiner L, Davis M, Ressler KJ . Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat Neurosci 2006; 9: 870–872. ArticleCASPubMedPubMed Central Google Scholar
Weisskopf MG, Bauer EP, LeDoux JE . L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci 1999; 19: 10512–10519. ArticleCASPubMedPubMed Central Google Scholar
Bauer EP, Schafe GE, LeDoux JE . NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 2002; 22: 5239–5249. ArticleCASPubMedPubMed Central Google Scholar
Cain CK, Blouin AM, Barad M . L-type voltage-gated calcium channels are required for extinction, but not for acquisition or expression, of conditional fear in mice. J Neurosci 2002; 22: 9113–9121. ArticleCASPubMedPubMed Central Google Scholar
Wang H, Ferguson GD, Pineda VV, Cundiff PE, Storm DR . Overexpression of type-1 adenylyl cyclase in mouse forebrain enhances recognition memory and LTP. Nat Neurosci 2004; 7: 635–642. ArticleCASPubMed Google Scholar
Monti B, Berteotti C, Contestabile A . Subchronic rolipram delivery activates hippocampal CREB and arc, enhances retention and slows down extinction of conditioned fear. Neuropsychopharmacology 2006; 31: 278–286. ArticleCASPubMed Google Scholar
Goosens KA, Holt W, Maren S . A role for amygdaloid PKA and PKC in the acquisition of long-term conditional fear memories in rats. Behav Brain Res 2000; 114: 145–152. ArticleCASPubMed Google Scholar
Schafe GE, Nadel NV, Sullivan GM, Harris A, LeDoux JE . Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn Memory 1999; 6: 97–110. CAS Google Scholar
Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE . Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 2000; 20: 8177–8187. ArticleCASPubMedPubMed Central Google Scholar
Tronson NC, Wiseman SL, Olausson P, Taylor JR . Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat Neurosci 2006; 9: 167–169. ArticleCASPubMed Google Scholar
Lu KT, Walker DL, Davis M . Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J Neurosci 2001; 21: RC162. ArticleCASPubMedPubMed Central Google Scholar
Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G . CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem 2004; 11: 625–632. ArticlePubMedPubMed Central Google Scholar
Herry C, Trifilieff P, Micheau J, Luthi A, Mons N . Extinction of auditory fear conditioning requires MAPK/ERK activation in the basolateral amygdala. Eur J Neurosci 2006; 24: 261–269. ArticlePubMed Google Scholar
Dash PK, Mach SA, Blum S, Moore AN . Intrahippocampal wortmannin infusion enhances long-term spatial and contextual memories. Learn Mem 2002; 9: 167–177. ArticlePubMedPubMed Central Google Scholar
Lin CH, Yeh SH, Lu KT, Leu TH, Chang WC, Gean PW . A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 2001; 31: 841–851. ArticleCASPubMed Google Scholar
Lin CH, Yeh SH, Leu TH, Chang WC, Wang ST, Gean PW . Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci 2003; 23: 1574–1579. ArticleCASPubMedPubMed Central Google Scholar
Chen X, Garelick MG, Wang H, Lil V, Athos J, Storm DR . PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nat Neurosci 2005; 8: 925–931. ArticleCASPubMed Google Scholar
Lisman JE, Zhabotinsky AM . A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 2001; 31: 191–201. ArticleCASPubMed Google Scholar
Kalia LV, Gingrich JR, Salter MW . Src in synaptic transmission and plasticity. Oncogene 2004; 23: 8007–8016. ArticleCASPubMed Google Scholar
Lu YM, Roder JC, Davidow J, Salter MW . Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 1998; 279: 1363–1367. ArticleCASPubMed Google Scholar
Bevilaqua LR, Rossato JI, Medina JH, Izquierdo I, Cammarota M . Src kinase activity is required for avoidance memory formation and recall. Behav Pharmacol 2003; 14: 649–652. ArticleCASPubMed Google Scholar
Kojima N, Sakamoto T, Endo S, Niki H . Impairment of conditioned freezing to tone, but not to context, in Fyn-transgenic mice: relationship to NMDA receptor subunit 2B function. Eur J Neurosci 2005; 21: 1359–1369. ArticleCASPubMed Google Scholar
Bevilaqua LR, da Silva WN, Medina JH, Izquierdo I, Cammarota M . Extinction and reacquisition of a fear-motivated memory require activity of the Src family of tyrosine kinases in the CA1 region of the hippocampus. Pharmacol Biochem Behav 2005; 81: 139–145. ArticleCASPubMed Google Scholar
Stewart HS . The interrelated effects of perceived social support, social pressure, social perceptions, and role-related guilt on stress, life satisfaction, and parental satisfaction of mothers with preschool children: The heart of the maternal dilemma. Dissertation Abstracts International: Section B the Sciences & Engineering. Univ Microfilms International: US, 2001; 61: 5060. Google Scholar
Huang YS, Richter JD . Regulation of local mRNA translation. Curr Opin Cell Biol 2004; 16: 308–313. ArticleCASPubMed Google Scholar
Si K, Lindquist S, Kandel ER . A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 2003; 115: 879–891. ArticleCASPubMed Google Scholar
Berger-Sweeney J, Zearfoss NR, Richter JD . Reduced extinction of hippocampal-dependent memories in CPEB knockout mice. Learn Mem 2006; 13: 4–7. ArticlePubMed Google Scholar
Alarcon JM, Hodgman R, Theis M, Huang YS, Kandel ER, Richter JD . Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Memory 2004; 11: 318–327. Article Google Scholar
Millward TA, Zolnierowicz S, Hemmings BA . Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci 1999; 24: 186–191. ArticleCASPubMed Google Scholar
Lin CH, Lee CC, Gean PW . Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol 2003; 63: 44–52. ArticleCASPubMed Google Scholar
Zhou Q, Poo MM . Reversal and consolidation of activity-induced synaptic modifications. Trends Neurosci 2004; 27: 378–383. ArticleCASPubMed Google Scholar
Huang YY, Li XC, Kandel ER . cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 1994; 79: 69–79. ArticleCASPubMed Google Scholar
Nguyen PV, Abel T, Kandel ER . Requirement of a critical period of transcription for induction of a late phase of LTP. Science 1994; 265: 1104–1107. ArticleCASPubMed Google Scholar
Bailey DJ, Kim JJ, Sun W, Thompson RF, Helmstetter FJ . Acquisition of fear conditioning in rats requires the synthesis of mRNA in the amygdala. Behav Neurosci 1999; 113: 276–282. ArticleCASPubMed Google Scholar
Vianna MR, Igaz LM, Coitinho AS, Medina JH, Izquierdo I . Memory extinction requires gene expression in rat hippocampus. Neurobiol Learn Mem 2003; 79: 199–203. ArticleCASPubMed Google Scholar
Flood JF, Jarvik ME, Bennett EL, Orme AE, Rosenzweig MR . Protein synthesis inhibition and memory for pole jump active avoidance and extinction. Pharmacol Biochem Behav 1977; 7: 71–77. ArticleCASPubMed Google Scholar
Power AE, Berlau DJ, McGaugh JL, Steward O . Anisomycin infused into the hippocampus fails to block ‘reconsolidation’ but impairs extinction: the role of re-exposure duration. Learn Mem 2006; 13: 27–34. ArticleCASPubMedPubMed Central Google Scholar
Vianna MR, Szapiro G, McGaugh JL, Medina JH, Izquierdo I . Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc Natl Acad Sci USA 2001; 98: 12251–12254. ArticleCASPubMedPubMed Central Google Scholar
Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J . Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J Neurosci 2004; 24: 1962–1966. ArticleCASPubMedPubMed Central Google Scholar
Lattal KM, Abel T . Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear. J Neurosci 2001; 21: 5773–5780. ArticleCASPubMedPubMed Central Google Scholar
Myers KM, Davis M . Systems-level reconsolidation: reengagement of the hippocampus with memory reactivation. Neuron 2002; 36: 340–343. ArticleCASPubMed Google Scholar
Misanin JR, Miller RR, Lewis DJ . Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 1968; 160: 554–555. ArticleCASPubMed Google Scholar
Nader K, Schafe GE, Le Doux JE . Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 2000; 406: 722–726. ArticleCASPubMed Google Scholar
Maren S, Ferrario CR, Corcoran KA, Desmond TJ, Frey KA . Protein synthesis in the amygdala, but not the auditory thalamus, is required for consolidation of Pavlovian fear conditioning in rats. Eur J Neurosci 2003; 18: 3080–3088. ArticlePubMed Google Scholar
Schafe GE, LeDoux JE . Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci 2000; 20: RC96. ArticleCASPubMedPubMed Central Google Scholar
Eisenberg M, Kobilo T, Berman DE, Dudai Y . Stability of retrieved memory: inverse correlation with trace dominance. Science 2003; 301: 1102–1104. ArticleCASPubMed Google Scholar
Pedreira ME, Maldonado H . Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 2003; 38: 863–869. ArticleCASPubMed Google Scholar
Duvarci S, Mamou CB, Nader K . Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala. European Journal of Neuroscience 2006; 24: 249–260. ArticlePubMed Google Scholar
Runyan JD, Dash PK . Inhibition of hippocampal protein synthesis following recall disrupts expression of episodic-like memory in trace conditioning. Hippocampus 2005; 15: 333–339. ArticlePubMed Google Scholar
Eisenberg M, Dudai Y . Reconsolidation of fresh, remote, and extinguished fear memory in Medaka: old fears don't die. Eur J Neurosci 2004; 20: 3397–3403. ArticlePubMed Google Scholar
Lattal KM, Honarvar S, Abel T . Effects of post-session injections of anisomycin on the extinction of a spatial preference and on the acquisition of a spatial reversal preference. Behav Brain Res 2004; 153: 327–339. ArticleCASPubMed Google Scholar
Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch Gen Psychiatry 2004; 61: 1136–1144. ArticlePubMed Google Scholar
Rothbaum BO, Hodges LF, Kooper R, Opdyke D, Williford JS, North M . Effectiveness of computer-generated (virtual reality) graded exposure in the treatment of acrophobia. Am J Psychiatry 1995; 152: 626–628. ArticleCASPubMed Google Scholar
Rothbaum BO, Hodges L, Smith S, Lee JH, Price L . A controlled study of virtual reality exposure therapy for the fear of flying. J Consult Clin Psychol 2000; 68: 1020–1026. ArticleCASPubMed Google Scholar
Hofmann SG, Meuret AE, Smits JA, Simon NM, Pollack MH, Eisenmenger K et al. Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Arch Gen Psychiatry 2006; 63: 298–304. ArticleCASPubMed Google Scholar
Guastella AJ, Dadds MR, Lovibond PF, Mitchell P, Richardson R . A randomized controlled trial of the effect of d-cycloserine on exposure therapy for spider fear. J Psychiatr Res 2006 [Epub ahead of print].
Bertotto ME, Bustos SG, Molina VA, Martijena ID . Influence of ethanol withdrawal on fear memory: effect of d-cycloserine. Neuroscience 2006; 142: 979–990. ArticleCASPubMed Google Scholar