Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy (original) (raw)
Siegel, RL, Miller, KD, and Jemal, A (2016). Cancer statistics, 2016. CA Cancer J Clin. 66, 7-30.
Fidler, MM, Soerjomataram, I, and Bray, F (2016). A global view on cancer incidence and national levels of the human development index. Int J Cancer. 139, 2436-46.
Lippman, SM, and Hong, WK (2002). Cancer prevention science and practice. Cancer Res. 62, 5119-25.
Wang, X, Ouyang, Y, Liu, J, Zhu, M, Zhao, G, and Bao, W (2014). Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 349, g4490.
Garcia-Closas, R, Gonzalez, CA, Agudo, A, and Riboli, E (1999). Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control. 10, 71-5.
Rossi, M, Negri, E, Talamini, R, Bosetti, C, Parpinel, M, and Gnagnarella, P (2006). Flavonoids and colorectal cancer in Italy. Cancer Epidemiol Biomarkers Prev. 15, 1555-8.
Bosetti, C, Spertini, L, Parpinel, M, Gnagnarella, P, Lagiou, P, and Negri, E (2005). Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomarkers Prev. 14, 805-8.
Gates, MA, Vitonis, AF, Tworoger, SS, Rosner, B, Titus-Ernstoff, L, and Hankinson, SE (2009). Flavonoid intake and ovarian cancer risk in a population-based case-control study. Int J Cancer. 124, 1918-25.
Horn-Ross, PL, John, EM, Canchola, AJ, Stewart, SL, and Lee, MM (2003). Phytoestrogen intake and endometrial cancer risk. J Natl Cancer Inst. 95, 1158-64.
Frankenfeld, CL, Cerhan, JR, Cozen, W, Davis, S, Schenk, M, and Morton, LM (2008). Dietary flavonoid intake and non-Hodgkin lymphoma risk. Am J Clin Nutr. 87, 1439-45.
Rusznyák, ST, and Szent-Györgyi, A (1936). Vitamin P: flavonols as vitamins. Nature. 138, 27.
Beecher, GR (2003). Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr. 133, 3248S-54S.
Birt, DF, Walker, B, Tibbels, MG, and Bresnick, E (1986). Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis. 7, 959-63.
Shukla, S, Bhaskaran, N, Babcook, MA, Fu, P, Maclennan, GT, and Gupta, S (2014). Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis. 35, 452-60.
Shukla, S, MacLennan, GT, Fu, P, and Gupta, S (2012). Apigenin attenuates insulin-like growth factor-I signaling in an autochthonous mouse prostate cancer model. Pharm Res. 29, 1506-17.
Silvan, S, and Manoharan, S (2013). Apigenin prevents deregulation in the expression pattern of cell-proliferative, apoptotic, inflammatory and angiogenic markers during 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Arch Oral Biol. 58, 94-101.
Silvan, S, Manoharan, S, Baskaran, N, Anusuya, C, Karthikeyan, S, and Prabhakar, MM (2011). Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Eur J Pharmacol. 670, 571-7.
Gómez-García, FJ, López-Jornet, MP, Alvarez-Sánchez, N, Castillo-Sánchez, J, Benavente-García, O, and Vicente Ortega, V (2013). Effect of the phenolic compounds apigenin and carnosic acid on oral carcinogenesis in hamster induced by DMBA. Oral Dis. 19, 279-86.
Baldasquin-Caceres, B, Gomez-Garcia, FJ, López-Jornet, P, Castillo-Sanchez, J, and Vicente-Ortega, V (2014). Chemopreventive potential of phenolic compounds in oral carcinogenesis. Arch Oral Biol. 59, 1101-7.
Wei, H, Tye, L, Bresnick, E, and Birt, DF (1990). Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 50, 499-502.
Byun, S, Park, J, Lee, E, Lim, S, Yu, JG, and Lee, SJ (2013). Src kinase is a direct target of apigenin against UVB-induced skin inflammation. Carcinogenesis. 34, 397-405.
Tong, X, Mirzoeva, S, Veliceasa, D, Bridgeman, BB, Fitchev, P, and Cornwell, ML (2014). Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1. Oncotarget. 5, 11413-27.
Bridgeman, BB, Wang, P, Ye, B, Pelling, JC, Volpert, OV, and Tong, X (2016). Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention. Cell Signal. 28, 460-8.
Leonardi, T, Vanamala, J, Taddeo, SS, Davidson, LA, Murphy, ME, and Patil, BS (2010). Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med (Maywood). 235, 710-7.
Tatsuta, A, Iishi, H, Baba, M, Yano, H, Murata, K, and Mukai, M (2000). Suppression by apigenin of peritoneal metastasis of intestinal adenocarcinomas induced by azoxymethane in Wistar rats. Clin Exp Metastasis. 18, 657-62.
Zhong, Y, Krisanapun, C, Lee, SH, Nualsanit, T, Sams, C, and Peungvicha, P (2010). Molecular targets of apigenin in colorectal cancer cells: involvement of p21, NAG-1 and p53. Eur J Cancer. 46, 3365-74.
Shukla, S, Fu, P, and Gupta, S (2014). Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer. Apoptosis. 19, 883-94.
Pandey, M, Kaur, P, Shukla, S, Abbas, A, Fu, P, and Gupta, S (2012). Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog. 51, 952-62.
Shukla, S, Mishra, A, Fu, P, MacLennan, GT, Resnick, MI, and Gupta, S (2005). Up-regulation of insulin-like growth factor binding protein-3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB J. 19, 2042-4.
Shukla, S, Kanwal, R, Shankar, E, Datt, M, Chance, MR, and Fu, P (2015). Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget. 6, 31216-32.
Shukla, S, and Gupta, S (2006). Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther. 5, 843-52.
Shukla, S, and Gupta, S (2008). Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radic Biol Med. 44, 1833-45.
Mafuvadze, B, Liang, Y, Besch-Williford, C, Zhang, X, and Hyder, SM (2012). Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Horm Cancer. 3, 160-71.
Shao, H, Jing, K, Mahmoud, E, Huang, H, Fang, X, and Yu, C (2013). Apigenin sensitizes colon cancer cells to antitumor activity of ABT-263. Mol Cancer Ther. 12, 2640-50.
Wang, QR, Yao, XQ, Wen, G, Fan, Q, Li, YJ, and Fu, XQ (2011). Apigenin suppresses the growth of colorectal cancer xenografts via phosphorylation and up-regulated FADD expression. Oncol Lett. 2, 43-7.
Chunhua, L, Donglan, L, Xiuqiong, F, Lihua, Z, Qin, F, and Yawei, L (2013). Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem. 24, 1766-75.
Liu, LZ, Fang, J, Zhou, Q, Hu, X, Shi, X, and Jiang, BH (2005). Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer. Mol Pharmacol. 68, 635-43.
King, JC, Lu, QY, Li, G, Moro, A, Takahashi, H, and Chen, M (2012). Evidence for activation of mutated p53 by apigenin in human pancreatic cancer. Biochim Biophys Acta. 1823, 593-604.
Johnstone, RW, Ruefli, AA, and Lowe, SW (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell. 108, 153-64.
Hanahan, D, and Weinberg, RA (2011). Hallmarks of cancer: the next generation. Cell. 144, 646-74.
Ashkenazi, A (2008). Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19, 325-31.
Green, DR, and Kroemer, G (2004). The pathophysiology of mitochondrial cell death. Science. 305, 626-9.
Masuelli, L, Marzocchella, L, Quaranta, A, Palumbo, C, Pompa, G, and Izzi, V (2011). Apigenin induces apoptosis and impairs head and neck carcinomas EGFR/ErbB2 signaling. Front Biosci (Landmark Ed). 16, 1060-8.
Zhang, Q, Zhao, XH, and Wang, ZJ (2008). Flavones and flavonols exert cytotoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis. Food Chem Toxicol. 46, 2042-53.
Zhang, Q, Zhao, XH, and Wang, ZJ (2009). Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol In Vitro. 23, 797-807.
Turktekin, M, Konac, E, Onen, HI, Alp, E, Yilmaz, A, and Menevse, S (2011). Evaluation of the effects of the flavonoid apigenin on apoptotic pathway gene expression on the colon cancer cell line (HT29). J Med Food. 14, 1107-17.
Izeradjene, K, Douglas, L, Delaney, A, and Houghton, JA (2005). Casein kinase II (CK2) enhances death-inducing signaling complex (DISC) activity in TRAIL-induced apoptosis in human colon carcinoma cell lines. Oncogene. 24, 2050-8.
Farah, M, Parhar, K, Moussavi, M, Eivemark, S, and Salh, B (2003). 5,6-Dichloro-ribifuranosylbenzimidazole- and apigenin-induced sensitization of colon cancer cells to TNF-alpha-mediated apoptosis. Am J Physiol Gastrointest Liver Physiol. 285, G919-28.
Khan, TH, and Sultana, S (2006). Apigenin induces apoptosis in Hep G2 cells: possible role of TNF-alpha and IFN-gamma. Toxicology. 217, 206-12.
Kim, BR, Jeon, YK, and Nam, MJ (2011). A mechanism of apigenin-induced apoptosis is potentially related to anti-angiogenesis and anti-migration in human hepatocellular carcinoma cells. Food Chem Toxicol. 49, 1626-32.
Lee, SH, Ryu, JK, Lee, KY, Woo, SM, Park, JK, and Yoo, JW (2008). Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett. 259, 39-49.
De Duve, C, and Wattiaux, R (1966). Functions of lysosomes. Annu Rev Physiol. 28, 435-92.
Jardon, MA, Rothe, K, Bortnik, S, Vezenkov, L, Jiang, X, and Young, RN (2013). Autophagy: from structure to metabolism to therapeutic regulation. Autophagy. 9, 2180-2.
Rubinsztein, DC, Codogno, P, and Levine, B (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 11, 709-30.
Kroemer, G, Mariño, G, and Levine, B (2010). Autophagy and the integrated stress response. Mol Cell. 40, 280-93.
Ravikumar, B, Futter, M, Jahreiss, L, Korolchuk, VI, Lichtenberg, M, and Luo, S (2009). Mammalian macroautophagy at a glance. J Cell Sci. 122, 1707-11.
Kaushik, S, Bandyopadhyay, U, Sridhar, S, Kiffin, R, Martinez-Vicente, M, and Kon, M (2011). Chaperone-mediated autophagy at a glance. J Cell Sci. 124, 495-9.
White, E (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 12, 401-10.
Lorin, S, Hamaï, A, Mehrpour, M, and Codogno, P (2013). Autophagy regulation and its role in cancer. Semin Cancer Biol. 23, 361-79.
Rosenfeldt, MT, O’Prey, J, Morton, JP, Nixon, C, MacKay, G, and Mrowinska, A (2013). p53 status determines the role of autophagy in pancreatic tumour development. Nature. 504, 296-300.
Parkhitko, A, Myachina, F, Morrison, TA, Hindi, KM, Auricchio, N, and Karbowniczek, M (2011). Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci U S A. 108, 12455-60.
Rao, S, Tortola, L, Perlot, T, Wirnsberger, G, Novatchkova, M, and Nitsch, R (2014). A dual role for autophagy in a murine model of lung cancer. Nat Commun. 5, 3056.
Qu, X, Yu, J, Bhagat, G, Furuya, N, Hibshoosh, H, and Troxel, A (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 112, 1809-20.
Karantza-Wadsworth, V, and White, E (2007). Role of autophagy in breast cancer. Autophagy. 3, 610-3.
Liang, XH, Jackson, S, Seaman, M, Brown, K, Kempkes, B, and Hibshoosh, H (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 402, 672-6.
Takahashi, Y, Coppola, D, Matsushita, N, Cualing, HD, Sun, M, and Sato, Y (2007). Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol. 9, 1142-51.
Mariño, G, Salvador-Montoliu, N, Fueyo, A, Knecht, E, Mizushima, N, and López-Otín, C (2007). Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem. 282, 18573-83.
Moscat, J, and Diaz-Meco, MT (2009). p62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 137, 1001-4.
Moscat, J, and Diaz-Meco, MT (2012). p62: a versatile multitasker takes on cancer. Trends Biochem Sci. 37, 230-6.
Wei, H, Wang, C, Croce, CM, and Guan, JL (2014). p62/SQSTM1 synergizes with autophagy for tumor growth in vivo. Genes Dev. 28, 1204-16.
Duran, A, Linares, JF, Galvez, AS, Wikenheiser, K, Flores, JM, and Diaz-Meco, MT (2008). The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell. 13, 343-54.
Degenhardt, K, Mathew, R, Beaudoin, B, Bray, K, Anderson, D, and Chen, G (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10, 51-64.
Lévy, J, Cacheux, W, Bara, MA, L’Hermitte, A, Lepage, P, and Fraudeau, M (2015). Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat Cell Biol. 17, 1062-73.
Sharifi, MN, Mowers, EE, Drake, LE, Collier, C, Chen, H, and Zamora, M (2016). Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep. 15, 1660-72.
Bincoletto, C, Bechara, A, Pereira, GJ, Santos, CP, Antunes, F, and Peixoto da-Silva, J (2013). Interplay between apoptosis and autophagy, a challenging puzzle: new perspectives on antitumor chemotherapies. Chem Biol Interact. 206, 279-88.
Yang, ZJ, Chee, CE, Huang, S, and Sinicrope, FA (2011). The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 10, 1533-41.
Benbrook, DM, and Long, A (2012). Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol. 34, 286-97.
Mahalingam, D, Mita, M, Sarantopoulos, J, Wood, L, Amaravadi, RK, and Davis, LE (2014). Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy. 10, 1403-14.
Vogl, DT, Stadtmauer, EA, Tan, KS, Heitjan, DF, Davis, LE, and Pontiggia, L (2014). Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy. 10, 1380-90.
Rangwala, R, Chang, YC, Hu, J, Algazy, KM, Evans, TL, and Fecher, LA (2014). Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 10, 1391-402.
Rangwala, R, Leone, R, Chang, YC, Fecher, LA, Schuchter, LM, and Kramer, A (2014). Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 10, 1369-79.
Yang, A, Rajeshkumar, NV, Wang, X, Yabuuchi, S, Alexander, BM, and Chu, GC (2014). Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905-13.
Rosenfeld, MR, Ye, X, Supko, JG, Desideri, S, Grossman, SA, and Brem, S (2014). A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 10, 1359-68.
Cao, X, Liu, B, Cao, W, Zhang, W, Zhang, F, and Zhao, H (2013). Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells. Chin J Cancer Res. 25, 212-22.
Lee, Y, Sung, B, Kang, YJ, Kim, DH, Jang, JY, and Hwang, SY (2014). Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int J Oncol. 44, 1599-606.
Ruela-de-Sousa, RR, Fuhler, GM, Blom, N, Ferreira, CV, Aoyama, H, and Peppelenbosch, MP (2010). Cytotoxicity of apigenin on leukemia cell lines: implications for prevention and therapy. Cell Death Dis. 1, e19.
Tong, X, Smith, KA, and Pelling, JC (2012). Apigenin, a chemopreventive bioflavonoid, induces AMP-activated protein kinase activation in human keratinocytes. Mol Carcinog. 51, 268-79.
Jeremic, I, Tadic, V, Isakovic, A, Trajkovic, V, Markovic, I, and Redzic, Z (2013). The mechanisms of in vitro cytotoxicity of mountain tea, Sideritis scardica, against the C6 glioma cell line. Planta Med. 79, 1516-24.
Coelho, PL, Oliveira, MN, da Silva, AB, Pitanga, BP, Silva, VD, and Faria, GP (2016). The flavonoid apigenin from Croton betulaster Mull inhibits proliferation, induces differentiation and regulates the inflammatory profile of glioma cells. Anticancer Drugs. 27, 960-9.
Zhang, L, Cheng, X, Gao, Y, Zheng, J, Xu, Q, and Sun, Y (2015). Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct. 6, 3464-72.
Maiuri, MC, Zalckvar, E, Kimchi, A, and Kroemer, G (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 8, 741-52.
Jaeger, PA, and Wyss-Coray, T (2009). All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Mol Neurodegener. 4, 16.
El-Khattouti, A, Selimovic, D, Haikel, Y, and Hassan, M (2013). Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death. 6, 37-55.
Booth, LA, Tavallai, S, Hamed, HA, Cruickshanks, N, and Dent, P (2014). The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal. 26, 549-55.
Maes, H, Rubio, N, Garg, AD, and Agostinis, P (2013). Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med. 19, 428-46.
Jiang, P, and Mizushima, N (2014). Autophagy and human diseases. Cell Res. 24, 69-79.
Mohan, N, Banik, NL, and Ray, SK (2011). Combination of N-(4-hydroxyphenyl) retinamide and apigenin suppressed starvation-induced autophagy and promoted apoptosis in malignant neuroblastoma cells. Neurosci Lett. 502, 24-9.