Adams J 2003 Potential for proteasome inhibition in the treatment of cancer;Drug Discovery Today8 307–315 ArticleCASPubMed Google Scholar
Adrain C, Creagh E M, Cullen S P and Martin S J 2004 Caspasedependent inactivation of proteasome function during programmed cell death in_Drosophila_ and man;J. Biol. Chem. 279 36923–36930 ArticleCAS Google Scholar
Apcher G S, Heink S, Zantopf D, Kloetzel P M, Schmid H P, Mayer R J and Kruger E 2003 Human immunodeficiency virus-1 Tat protein interacts with distinct proteasomal alpha and beta subunits;FEBSLett.553 200–204 ArticleCAS Google Scholar
Arendt C S and Hochstrasser M 1999 Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly;EMBO J.18 3575–3585 ArticleCASPubMedPubMed Central Google Scholar
Arrigo A P, Tanaka K, Goldberg A L and Welch W J 1988 Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome);Nature (London)331 192–204 ArticleCAS Google Scholar
Arthur J S, Elce J S, Hegadorn C, Williams K and Greer P A 2000 Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division;Mol. Cell. Biol.20 4474–4481. ArticleCASPubMedPubMed Central Google Scholar
Barton L F, Cruz M, Rangwala R, Deepe G S Jr and Monaco J J 2002 Regulation of immunoproteasome subunit expression_in vivo_ following pathogenic fungal infection;J. Immunol. 169 3046–3052 Article Google Scholar
Barton L F, Runnels H A, Schell T D, Cho Y, Gibbons R, Tevethia S S, Deepe G S Jr and Monaco J J 2004 Immune defects in 28-kDa proteasome activator gamma-deficient mice;J. Immunol.172 3948–3954. ArticleCASPubMed Google Scholar
Benaroudj N and Goldberg A L 2000 PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone;Nat. Cell. Biol.2 833–839 ArticleCASPubMed Google Scholar
Benaroudj N, Zwickl P, Seemuller E, Baumeister W and Goldberg A L 2003 ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation;Mol. Cell11 69–78 ArticleCASPubMed Google Scholar
Berndt C, Bech-Otschir D, Dubiel W and Seeger M 2002 Ubiquitin System: JAMMing in the Name of the Lid;Curr. Biol.12 R815-R817 ArticleCASPubMed Google Scholar
Brown M S, Ye J, Rawson R B and Goldstein J L 2000 Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans;Cell100 391–398 ArticleCASPubMed Google Scholar
Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen R J and Levy F 2000 Identification and characterization of a mammalian protein interacting with 20S proteasome precursors;Proc. Natl. Acad. Sci. USA97 10348–10353 ArticleCASPubMedPubMed Central Google Scholar
Cardozo T and Pagano M 2004 The SCF ubiquitin ligase: insights into a molecular machine;Nat. Rev. Mol. Cell. Biol.5 739–751 ArticleCASPubMed Google Scholar
Chu-Ping M, Slaughter C A and Demartino G N 1992 Purification and characterization of a protein inhibitor of the 20S proteasome (macropain);Biochem. Biophys. Acta 1119 303–311 Google Scholar
Chandu D and Nandi D 2002 From proteins to peptides to amino acids: comparative genomics of enzymes involved in downstream events during cytosolic protein degradation;Appl. Genom. Proteom.4 235–252 Google Scholar
Chandu D and Nandi D 2004 Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation;Res. Microbiol.155 710–719 ArticleCASPubMed Google Scholar
Chen P and Hochstrasser M 1996 Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly;Cell86 961–972 ArticleCASPubMed Google Scholar
Ciechanover A, Hod Y and Hershko A 1978 A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes;Biochem. Biophys. Res. Commun.81 1100–1105 Article Google Scholar
Ciechanover A, Finley D and Varshavsky A 1984 Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85;Cell37 57–66 ArticleCASPubMed Google Scholar
Ciechanover A and Ben-Saadon R 2004 N-terminal ubiquitination: more protein substrates join in;Trends Cell Biol.14 103–106 ArticleCASPubMed Google Scholar
Ciechanover A and Iwai K 2004 The ubiquitin system: from basic mechanisms to the patient bed;IUBMB Life56 193–201 ArticleCASPubMed Google Scholar
Cuervo A M, Palmer A, Rivett A J and Knecht E 1995 Degradation of proteasomes by lysosomes in rat liver;Eur. J. Biochem.227 792–800 ArticleCASPubMed Google Scholar
Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, Hegerl R and Baumeister W 1989 The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria;FEBS Lett.251 125–131 ArticleCASPubMed Google Scholar
Darwin K H, Ehrt S, Gutierrez-Ramos J C, Weich N and Nathan C F 2003 The proteasome of_Mycobacterium tuberculosis_ is required for resistance to nitric oxide;Science302 1963–1966 ArticleCASPubMed Google Scholar
Darwin K H, Lin G, Chen Z, Li H and Nathan C F 2005 Characterization of a_Mycobacterium tuberculosis_ proteasomal ATPase homologue;Mol. Microbiol.55 561–571 ArticleCASPubMed Google Scholar
De M, Jayarapu K, Elenich L, Monaco J J, Colbert R A and Griffin T A 2003 Beta 2 subunit propeptides influence cooperative proteasome assembly;J. Biol. Chem.278 6153–6159 ArticleCASPubMed Google Scholar
Dick T P, Ruppert T, Groettrup M, Kloetzel P M, Kuehn L, Koszinowski U H, Stevanovic S, Schild H and Rammensee H G 1996 Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands;Cell86 253–262 ArticleCASPubMed Google Scholar
Etlinger J D and Goldberg A L 1977 A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes;Proc. Natl. Acad. Sci. USA.74 54–58 ArticleCASPubMedPubMed Central Google Scholar
Enenkel C, Lehmann A and Kloetzel P M 1998 Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast;EMBOJ.17 6144–6154 ArticleCAS Google Scholar
Elsasser S and Finley D 2005 Delivery of ubiquitinated substrates to protein-unfolding machines;Nat. CellBiol.7 742–749 ArticleCAS Google Scholar
Fabunmi R P, Wigley W C, Thomas P J and DeMartino G N 2000 Activity and regulation of the centrosome-associated proteasome;J. Biol. Chem.275 409–413 ArticleCASPubMed Google Scholar
Fehling H J, Swat W, Laplace C, Kuhn R, Rajewsky K, Muller U and von Boehmer H 1994 MHC class I expression in mice lacking the proteasome subunit LMP-7;Science265 1234–1237 ArticleCASPubMed Google Scholar
Fenteany G, Standaert R F, Lane W S, Choi S, Corey E J and Schreiber S L 1995 Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin;Science268 726–731 ArticleCASPubMed Google Scholar
Finley D, Ciechanover A and Varshavsky A 1984 Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85;Cell37 43–55 ArticleCASPubMed Google Scholar
Förster A, Whitby F G and Hill C P 2003 The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation;EMBOJ.22 4356–4364 Article Google Scholar
Förster A, Masters E I, Whitby F G, Robinson H and Hill C P 2005 The 1.9 Å structure of aproteasome-11S activator complex and implications forproteasome-PAN/PA700 interactions;Mol. Cell18 589–599 ArticlePubMedCAS Google Scholar
Frentzel S, Pesold-Hurt B, Seelig A and Kloetzel P M 1994 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes;J. Mol. Biol.236 975–981 ArticleCASPubMed Google Scholar
Gaczynska M, Osmulski P A, Gao Y, Post M J and Simons M 2003 Proline and arginine-rich peptides constitute a novel class of allosteric inhibitors of proteasome activity;Biochemistry42 8663–8670. ArticleCASPubMed Google Scholar
Gao Y, Lecker S, Post M J, Hietaranta A J, Li J, Volk R, Li M, Sato K, Saluja A K, Steer M L, Goldberg A L and Simons M 2000 Inhibition of ubiquitin-proteasome pathway-mediated I kappa B alpha degradation by a naturally occurring antibacterial peptide;J. Clin. Invest.106 439–448. ArticleCASPubMedPubMed Central Google Scholar
Glickman M H, Rubin D M, Fried V A and Finley D 1998 The regulatory particle of the_Saccharomyces cerevisiae_ proteasome;Mol. Cell. Biol.18 3149–3162 ArticleCASPubMedPubMed Central Google Scholar
Goldstein J L 2004 Towering science: an ounce of creativity is worth a ton of impact;Nat. Med.10 1015–1016 ArticleCASPubMed Google Scholar
Griffin T A, Nandi D, Cruz M, Fehling H J, Kaer L V, Monaco J J and Colbert R A 1998 Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits;J. Exp. Med.187 97–104 ArticleCASPubMedPubMed Central Google Scholar
Griffin T A, Slack J P, McCluskey T S, Monaco J J and Colbert R A 2000 Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly;Mol. Cell. Biol. Res. Commun.3 212–217 ArticleCASPubMed Google Scholar
Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik H D and Huber R 1997 Structure of 20S Proteasome from yeast at 2.4Å resolution;Nature (London)386 463–470 ArticleCAS Google Scholar
Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf D H and Huber R 1999 The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study;Proc. Natl. Acad. Sci. USA96 10976–10983 ArticleCASPubMedPubMed Central Google Scholar
Groll M, Kim K B, Kairies N, Huber R and Crews C M 2000 Crystal structure of epoxomicin: 20S proteasome reveals a molecular bassifor selectivity of alpha ‘beta’ —epoxyketone proteasome inhibitors;J. Am. Chem. Soc.122 1237–1238 ArticleCAS Google Scholar
Groll M and Huber R 2004 Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach;Biochim. Biophys. Acta1695 33–44 ArticleCASPubMed Google Scholar
Grune T, Jung T, Merker K and Davies K J 2004 Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease;Int. J. Biochem. Cell. Biol.36 2519–2530 ArticleCASPubMed Google Scholar
Grziwa A, Maack S, Puhler G, Wiegand G, Baumeister W and Jaenicke R 1994 Dissociation and reconstitution of the Thermoplasma proteasome;Eur. J. Biochem.223 1061–1067 ArticleCASPubMed Google Scholar
Guo G G, Gu M and Etlinger J D 1994 240-kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase;J. Biol. Chem.269 12399–12402 PubMed Google Scholar
Harbers K, Muller U, Grams A, Li E, Jaenisch R and Franz T 1996 Provirus integration into a gene encoding a ubiquitin-conjugating enzyme results in a placental defect and embryonic lethality;Proc. Natl. Acad. Sci. USA93 12412–12417 ArticleCASPubMedPubMed Central Google Scholar
Harris J L, Alper P B, Li J, Rechsteiner M and Backes B J 2001 Substrate specificity of the human proteasome;Chem. Biol.8 1131–1141 ArticleCASPubMed Google Scholar
Heink S, Ludwig D, Kloetzel P and Kruger E 2005 IFNγ-induced immune adaptation of the proteasome system is an accelerated and transient response;Proc. Natl. Acad. Sci. USA.102 9241–9246 ArticleCASPubMedPubMed Central Google Scholar
Hendil K B, Khan S and Tanaka K 1998 Simultaneous binding of PA28 and PA700 activators to 20S proteasomes;Biochem. J.332 749–754 ArticlePubMedPubMed Central Google Scholar
Hershko A, Ciechanover A and Rose I A 1979 Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP;Proc. Natl. Acad. Sci. USA76 3107–3110 ArticleCASPubMedPubMed Central Google Scholar
Hershko A, Ciechanover A, Heller H, Haas A L and Rose I A 1980 Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis;Proc. Natl. Acad. Sci. USA77 1783–1786 ArticleCASPubMedPubMed Central Google Scholar
Hershko A, Ciechanover A and Rose I A 1981 Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown;J. Biol. Chem.256 1525–1528 CASPubMed Google Scholar
Hershko A, Eytan E, Ciechanover A and Haas A L 1982 Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins;J. Biol. Chem.257 13964–13970 CASPubMed Google Scholar
Hershko A, Heller H, Elias S and Ciechanover A 1983 Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown;J. Biol. Chem258 8206–8214 CASPubMed Google Scholar
Hershko A, Helen H, Eytane and Ressy 1986 The Protein substrate binding site of the Ubiquitin-Protein ligase system;J. Biol. Chem.261 11982–11989 Google Scholar
Hershko A, Ganoth D, Sudakin V, Dahan A, Cohen L H, Luca F C, Ruderman J V and Eytan E 1994 Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2;J. Biol. Chem.269 4940–4946 CASPubMed Google Scholar
Heinemeyer W, Fischer M, Krimmer T, Stachon U and Wolf D H 1997 The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing;J. Biol. Chem.272 25200–25209 ArticleCASPubMed Google Scholar
Hirano Y, Hendil K B, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K and Murata S 2005 A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes;Nature (London) 437 1381–1385 ArticleCAS Google Scholar
Hoffman L, Pratt G and Rechsteiner M 1992 Multiple forms of the 20 S multicatalytic and the 26 S ubiquitin/ATP-dependent proteases from rabbit reticulocyte lysate;J. Biol. Chem.267 22362–22368 CASPubMed Google Scholar
Hoppe T 2005 Multiubiquitylation by E4 enzymes: ‘one size’ doesn't fit all;Trends Biochem. Sci.30 183–187 ArticleCASPubMed Google Scholar
Hough R, Pratt G and Rechsteiner M 1986 Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates;j. Biol. Chem.261 2400–2408 CASPubMed Google Scholar
Hu Z, Zhang Z, Doo E, Coux O, Goldberg A L and Liang T J 1999 Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex;J. Virol.73 7231–7240 CASPubMedPubMed Central Google Scholar
Jager S, Groll M, Huber R, Wolf D H and Heinemeyer W 1999 Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function;J. Mol. Biol.291 997–1013 ArticleCASPubMed Google Scholar
Karin M and Ben-Neriah Y 2000 Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity;Annu. Rev. Immunol.18 621–663 ArticleCASPubMed Google Scholar
Khan S, van den Broek M, Schwarz K, de Giuli R, Diener P A and Groettrup M 2001 Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver;J. Immunol.167 6859–6868 ArticleCASPubMed Google Scholar
Kim J H, Park K C, Jung S S, Bang O and Chung C H 2003 Deubiquitinating enzymes as cellular regulators;J. Biochem.134 9–18 ArticleCASPubMed Google Scholar
Kingsbury D J, Griffin T A and Colbert R A 2000 Novel propeptide function in 20 S proteasome assembly influences beta subunit composition;J. Biol. Chem.275 24156–24162 ArticleCASPubMed Google Scholar
Kishino T, Lalande M and Wagstaff J. 1997 UBE3A/E6-AP mutations cause Angelman syndrome;Nat. Genet.15 70–73 ArticleCASPubMed Google Scholar
Kisselev A F, Akopian T N and Goldberg A L 1998 Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes;J. Biol. Chem. 273, 1982–1989 Article Google Scholar
Kisselev A F, Akopian T N, Woo K M and Goldberg A L 1999 The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation;J. Biol. Chem.274 3363–3371 ArticleCASPubMed Google Scholar
Kisselev A F, Songyang Z and Goldberg A L 2000 Why does threonine, and not serine, function as the active site nucleophile in proteasomes?;J. Biol. Chem.275 14831–14837 ArticleCASPubMed Google Scholar
Kloetzel P M 2004 The proteasome and MHC class I antigen processing;Biochim. Biophys. Acta 1695 225–233 ArticleCAS Google Scholar
Knipfer N and Shrader T E 1997 Inactivation of the 20S proteasome in_Mycobacterium smegmatis_;Mol. Microbiol.25 375–383 ArticleCASPubMed Google Scholar
Knowlton J R, Johnston S C, Whitby F G, Realini C, Zhang Z, Rechsteiner M and Hill C P 1997 Structure of the proteasome activator REGalpha (PA28alpha);Nature (London)390 639–643 ArticleCAS Google Scholar
Koegl M, Hoppe T, Schlenker S, Ulrich H D, Mayer T U and Jentsch S 1999 A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly;Cell96 635–644 ArticleCASPubMed Google Scholar
Kostova Z and Wolf D H 2003 For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection;EMBOJ.22 2309–2317 ArticleCAS Google Scholar
Leggett D S, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker R T, Walz T, Ploegh H and Finley D 2002 Multiple associated proteins regulate proteasome structure and function;Mol. Cell.10 495–507 ArticleCASPubMed Google Scholar
Li J, Gao X, Joss L and Rechsteiner M 2000 The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits;J. Mol. Biol.299 641–654 ArticleCASPubMed Google Scholar
Liu C W, Corboy M J, DeMartino G N and Thomas P J 2003 Endoproteolytic Activity of the Proteasome;Science299 408–411 ArticleCASPubMed Google Scholar
Lowe J, Stock D, Jap B, Zwick P, Baumeister W and Huber R 1995 Crystal structure of the 20S Proteasome from the Archaeon_T. acidophilum_ at 3.4Å resolution;Science268 533–539 ArticleCASPubMed Google Scholar
Lupas A, Zwickl P and Baumeister W 1994 Proteasome sequences in eubacteria;Trends Biochem. Sci.19 533–534 ArticleCASPubMed Google Scholar
Lykke-Andersen K, Schaefer L, Menon S, Deng X W, Miller J B and Wei N 2003 Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death;Mol. Cell Biol.23 6790–6797 ArticleCASPubMedPubMed Central Google Scholar
Matsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, Kakizuka A, Kitagawa M and Nakayama K I 2004 Molecular clearance of ataxin-3 is regulated by a mammalian E4;EMBOJ.23 659–669 ArticleCAS Google Scholar
McCutchen-Maloney S L, Matsuda K, Shimbara N, Binns D D, Tanaka K, Slaughter C A and DeMartino G N 2000 cDNA cloning, expression, and functional characterization of PI31, a prolinerich inhibitor of the proteasome;J. Biol. Chem.275 18557–18565 ArticleCASPubMed Google Scholar
Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel P M and Kruger E 2003 Inhibition of proteasome activity induces concerted expression of proteasome genes and_de novo_ formation of mammalian proteasomes;J. Biol. Chem.278 21517–21525 ArticleCASPubMed Google Scholar
Meng L, Mohan R, Kwok B H, Elofsson M, Sin N and Crews C M 1999 Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity;Proc. Natl. Acad. Sci. USA96 10403–10408 ArticleCASPubMedPubMed Central Google Scholar
Monaco J J and McDevitt H O 1984 H-2-linked low-molecular weight polypeptide antigens assemble into an unusual macromolecular complex;Nature (London)309 797–799 ArticleCAS Google Scholar
Murata S, Kawahara H, Tohma S, Yamamoto K, Kasahara M, Nabeshima Y, Tanaka K and Chiba T 1999 Growth retardation in mice lacking the proteasome activator PA28gamma;J. Biol. Chem.274 38211–38215 ArticleCASPubMed Google Scholar
Murata S, Udono H, Tanahashi N, Hamada N, Watanabe K, Adachi K, Yamano T, Yui K, Kobayashi N, Kasahara M, Tanaka K and Chiba T 2001 Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta;EMBO J.20 5898–5907 ArticleCASPubMedPubMed Central Google Scholar
Nandi D, Woodward E, Ginsburg D B and Monaco J J 1997 Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits;EMBO J.16 5363–5375 ArticleCASPubMedPubMed Central Google Scholar
Nandi D, Marusina K and Monaco J J 1998 How do endogenous proteins become peptides and reach the endoplasmic reticulum;Curr. Top. Microbiol. Immunol.232 15–47 CASPubMed Google Scholar
Niedermann G, Grimm R, Geier E, Maurer M, Realini C, Gartmann C, Soll J, Omura S, Rechsteiner M C, Baumeister W and Eichmann K 1997 Potential immunocompetence of proteolytic fragments produced by proteasomes before evolution of the vertebrate immune system;J. Exp. Med.186 209–220 ArticleCASPubMedPubMed Central Google Scholar
Park Y, Hwang Y P, Lee J S, Seo S H, Yoon S K and Yoon J B 2005 Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases;Mol. Cell. Biol.25 3842–3853 ArticleCASPubMedPubMed Central Google Scholar
Pickart C M and Cohen R E 2004 Proteasomes and their kin: proteases in the machine age;Nat. Rev. Mol. Cell. Biol.5 177–187 ArticleCASPubMed Google Scholar
Ping M C, Willy P J, Slaughter C A and DeMartino G N 1993 PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus;J. Biol. Chem.268 22514–22519 Google Scholar
Rajkumar S V, Richardson P G, Hideshima T and Anderson K C 2005 Proteasome inhibition as a novel therapeutic target in human cancer;J. Clin. Oncol.23 630–639 ArticleCASPubMed Google Scholar
Ramos P C, Hockendorff J, Johnson E S, Varshavsky A and Dohmen R J 1998 Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly;Cell92 489–499 ArticleCASPubMed Google Scholar
Rao H, Uhlmann F, Nasmyth K and Varshavsky A 2001 Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability;Nature (London)410 955–959 ArticleCAS Google Scholar
Rechsteiner M and Hill C P 2005 Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors;Trends Cell. Biol.15 7–33 ArticleCAS Google Scholar
Reits E A, Benham A M, Plougastel B, Neefjes J and Trowsdale J 1997 Dynamics of proteasome distribution in living cells;EMBO J.16 6087–6094 ArticleCASPubMedPubMed Central Google Scholar
Richard I, Roudaut C, Marchand S, Baghdiguian S, Herasse M, Stockholm D, Ono Y, Suel L, Bourg N, Sorimachi H, Lefranc G, Fardeau M, Sebille A and Beckmann J S 2000 Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear factor kappaB pathway perturbation in mice;J. Cell. Biol.151 1583–1590 ArticleCASPubMedPubMed Central Google Scholar
Rock K L, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D and Goldberg A L 1994 Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules;Cell78 761–771 ArticleCASPubMed Google Scholar
Ruepp A, Eckerskorn C, Bogyo M and Baumeister W 1998 Proteasome function is dispensable under normal but not under heat shock conditions in_Thermoplasma acidophilum_;FEBS Lett.425 87–90 ArticleCASPubMed Google Scholar
Sassetti C M, Boyd D H and Rubin E J 2003 Genes required for mycobacterial growth defined by high density mutagenesis;Mol. Microbiol.48 77–84 ArticleCASPubMed Google Scholar
Schauber C, Chen L, Tongaonkar P, Vega I, Lambertson D, Potts W and Madura K 1998 Rad23 links DNA repair to the ubiquitin/proteasome pathway;Nature (London)391 715–718 ArticleCAS Google Scholar
Schmid H P, Akhayat O, Martins De Sa C, Puvion F, Koehler K and Scherrer K 1984 The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins;EMBO J.3 29–34 ArticleCASPubMedPubMed Central Google Scholar
Schwechheimer C 2004 The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development;Biochim. Biophys. Acta 1695 45–54 ArticleCAS Google Scholar
Seemuller E, Lupas A, Stock D, Lowe J, Huber R and Baumeister W 1995 Proteasome from_Thermoplasma acidophilum_: a threonine protease;Science268 579–582 ArticleCASPubMed Google Scholar
Soza A, Knuehl C, Groettrup M, Henklein P, Tanaka K and Kloetzel P M 1997 Expression and subcellular localization of mouse 20S proteasome activator complex PA28;FEBS Lett.413 27–34 ArticleCASPubMed Google Scholar
Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L and Rotin D 1997 Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination;EMBO J.16 6325–6336 ArticleCASPubMedPubMed Central Google Scholar
Sun X M, Butterworth M, MacFarlane M, Dubiel W, Ciechanover A and Cohen G M 2004 Caspase activation inhibits proteasome function during apoptosis;Mol. Cell.14 81–93 ArticleCASPubMed Google Scholar
Tanaka K, Ii K, Ichihara A, Waxman L and Goldberg A L 1986 A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution;J. Biol. Chem.261 15197–15203 CASPubMed Google Scholar
Tanaka K, Yoshimura T and Ichihara A 1989 Role of substrate in reversible activation of proteasomes (multi-protease complexes) by sodium dodecyl sulfate;J. Biochem. (Tokyo)106 495–500 ArticleCAS Google Scholar
Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N and Tsukihara T 2002 The structure of the mammalian 20S proteasome at 2.75 Å resolution;Structure (Camb).10 609–618 ArticleCAS Google Scholar
Van Kaer L, Ashton-Rickardt P G, Eichelberger M, Gaczynska M, Nagashima K, Rock K L, Goldberg A L, Doherty P C and Tonegawa S 1994 Altered peptidase and viral-specific T cell response in LMP2 mutant mice;Immunity1 533–541 ArticlePubMed Google Scholar
Vassilev L T, Vu B T, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N and Liu E A 2004_In vivo_ activation of the p53 pathway by small-molecule antagonists of MDM2;Science 303 844–848 ArticleCAS Google Scholar
Velichutina I, Connerly P L, Arendt C S, Li X and Hochstrasser M 2004 Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast;EMBO J.23 500–510 ArticleCASPubMedPubMed Central Google Scholar
Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J and Deshaies R J 2000 Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes;Mol. Biol. Cell.11 3425–3439 ArticleCASPubMedPubMed Central Google Scholar
Verma R, Aravind L, Oania R, McDonald W H, Yates J R 3rd, Koonin E V and Deshaies R J 2002 Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome;Science298 611–615 ArticleCASPubMed Google Scholar
Voges D, Zwickl P and Baumeister W 1999 The 26S proteasome: a molecular machine designed for controlled proteolysis;Annu. Rev. Biochem.68 1015–10168 ArticleCASPubMed Google Scholar
Wang H R, Kania M, Baumeister W and Nederlof P M 1997 Import of human and Thermoplasma 20S proteasomes into nuclei of HeLA cells requires functional NLS sequences;Eur. J. Cell. Biol.73 105–113 CASPubMed Google Scholar
Ward C L, Omura S and Kopito R R 1995 Degradation of CFTR by the ubiquitin-proteasome pathway;Cell83 121–127 ArticleCASPubMed Google Scholar
Weissman A M 2001 Themes and variations on ubiquitylation;Nat. Rev. Mol. Cell. Biol.2 169–178 ArticleCASPubMed Google Scholar
Whitby F G, Masters E I, Kramer L, Knowlton J R, Yao Y, Wang C C and Hill C P 2000 Structural basis for the activation of 20S proteasomes by 11S regulators;Nature (London) 408 115–120 ArticleCAS Google Scholar
Wigley W C, Fabunmi R P, Lee M G, Marino C R, Muallem S, DeMartino G N and Thomas P J 1999 Dynamic association of proteasomal machinery with the centrosome;J. Cell. Biol. 145 481–490 Article Google Scholar
Wilk S and Orlowski M 1983 Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex;J. Neurochem.40 842–849 ArticleCASPubMed Google Scholar
Wilkinson K D, Urban M K and Haas A L 1980 Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes;J. Biol. Chem.255 7529–7532 CASPubMed Google Scholar
Wilkinson C R, Wallace M, Morphew M, Perry P, Allshire R, Javerzat J P, McIntosh J R and Gordon C 1998 Localization of the 26S proteasome during mitosis and meiosis in fission yeast;EMBO. J.17 6465–6476 ArticleCASPubMedPubMed Central Google Scholar
Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel P M and Kruger E 2000 Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7 (β5i) incorporation into 20S proteasomes;J. Mol. Biol.30 1–9 ArticleCAS Google Scholar
Wojcik C and DeMartino G N 2003 Intracellular localization of proteasomes;Int. J. Biochem. Cell. Biol.35 579–589 ArticleCASPubMed Google Scholar
Yao T and Cohen R E2002 A cryptic protease couples deubiquitination and degradation by the proteasome;Nature (London)419 403–407 ArticleCAS Google Scholar
Yen H C, Gordon C and Chang E C 2003_Schizosaccharomyces pombe_ Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome;Cell112 207–217 ArticleCASPubMed Google Scholar
Zaiss D M, Standera S, Holzhutter H, Kloetzel P and Sijts A J 1999 The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes;FEBSLett.457 333–338 ArticleCAS Google Scholar
Zaiss D M, Standera S, Kloetzel P M and Sijts A J 2002 PI31 is a modulator of proteasome formation and antigen processing;Proc. Natl. Acad. Sci. USA99 14344–14349 ArticleCASPubMedPubMed Central Google Scholar
Zhang Z, Clawson A and Rechsteiner M 1998a The proteasome activator 11 S regulator or PA28. Contribution By both alpha and beta subunits to proteasome activation;J. Biol. Chem.273 30660–30668 ArticleCASPubMed Google Scholar
Zhang Z, Clawson A, Realini C, Jensen C C, Knowlton J R, Hill C P and Rechsteiner M 1998b Identification of an activation region in the proteasome activator REGalpha;Proc. Natl. Acad. Sci. USA95 2807–2811 ArticleCASPubMedPubMed Central Google Scholar
Zwickl P, Kleinz J and Baumeister W 1994 Critical elements in proteasome assembly;Nat. Struct. Biol.1 765–770 ArticleCASPubMed Google Scholar
Zwickl P, Ng D, Woo K M, Klenk H P and Goldberg A L 1999 An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes;J. Biol. Chem.274 26008–26016 ArticleCASPubMed Google Scholar