Biochemical Research Papers - Academia.edu (original) (raw)

In the present study we provide evidence that SRP-35, a protein we identified in rabbit skeletal muscle sarcoplasmic reticulum, is an all-trans-retinol dehydrogenase. Analysis of the primary structure and tryptic digestion revealed that... more

In the present study we provide evidence that SRP-35, a protein we identified in rabbit skeletal muscle sarcoplasmic reticulum, is an all-trans-retinol dehydrogenase. Analysis of the primary structure and tryptic digestion revealed that its N-terminus encompasses a short hydrophobic sequence bound to the sarcoplasmic reticulum membrane, whereas its C-terminal catalytic domain faces the myoplasm. SRP-35 is also expressed in liver and adipocytes, where it appears in the post-microsomal supernatant; however, in skeletal muscle, SRP-35 is enriched in the longitudinal sarcoplasmic reticulum. Sequence comparison predicts that SRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C [dehydrogenase/reductase (short-chain dehydrogenase/reductase family) member 7C] subfamily. Retinol is the substrate of SRP-35, since its transient overexpression leads to an increased production of all-trans-retinaldehyde. Transfection of C2C12 myotubes with a fusion protein encoding SRP-35–EYFP...

Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of α-synuclein. However, the role of α-synuclein under physiological and pathological conditions remains poorly... more

Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of α-synuclein. However, the role of α-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the α-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200μM H2O2

The administration of xenobiotics may significantly alter the expression of cytochromes P450 (CYPs), thereby leading to potentially toxic cellular, physiologic, and pharmacologic responses. Indeed, an important task in the development of... more

The administration of xenobiotics may significantly alter the expression of cytochromes P450 (CYPs), thereby leading to potentially toxic cellular, physiologic, and pharmacologic responses. Indeed, an important task in the development of new therapeutic entities is to evaluate efficiently and quantitatively their potential effects on the expression level of different CYPs. In this report, reverse transcriptase polymerase chain reaction (RT–PCR) was used to measure basal and induced mRNA of a wide range of rat CYP isoforms. Rats (n = 3 per treatment) were treated with five prototype inducers of CYP isoforms or with vehicle only. RT and PCR efficiencies were determined using appropriate RNA and DNA standards. Messenger RNA was quantified by PicoGreen standard curves and normalized to cyclophilin. Quantitative RT–PCR was used successfully to demonstrate that CYP isoforms were induced at the mRNA level following drug administration. Notably, phenobarbital resulted in significant induction of CYP2B1, CYP2B2, CYP2C6, CYP2C13, CYP2E1, CYP3A1, and CYP3A2. 3-Methylcholanthrene induced CYP1A1, CYP1A2, and CYP1B1. CYP2C11 expression was highly variable and suppressed by pyridine, whereas the expression of CYP2E1 was suppressed by dexamethasone. We demonstrated that quantitative RT–PCR can be used to evaluate efficiently the effect of compounds on the expression of a wide range of CYP isoforms. The technique is advantageous over others in that it is very sensitive, efficient and applicable to highly homologous CYP isoforms. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:368–378, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20103

FGF receptor 2 isoform IIIb (FGFR2b), originally discovered as a receptor for FGF7, is known to be an important receptor in vertebrate morphogenesis, because FGFR2b null mice exhibit agenesis or dysgenesis of various organs, which undergo... more

FGF receptor 2 isoform IIIb (FGFR2b), originally discovered as a receptor for FGF7, is known to be an important receptor in vertebrate morphogenesis, because FGFR2b null mice exhibit agenesis or dysgenesis of various organs, which undergo budding and branching morphogenesis. Since FGF7 null mice do not exhibit marked defects in organogenesis, it has been considered that other FGF(s) than FGF7 might function as a major ligand for FGFR2b during organogenesis. One of the candidate ligands is FGF10, because FGF10 binds to FGFR2b with high affinity and the formation of the limb and lung is arrested in FGF10 null mice as found in FGFR2b-deficient mice. Previous analyses of FGF10 null mice revealed that FGF10 is required for limb and lung development. To elucidate the role of FGF10 in wide-range organogenesis, we further analyzed the phenotypes of the FGF10 knockout mice. We found diverse phenotypes closely related to those for FGFR2b-deficient mice, which includes the absence of thyroid, pituitary, and salivary glands, while minor defects were observed in the formation of teeth, kidneys, hair follicles, and digestive organs. These results suggest that FGF10 acts as a major ligand for FGFR2b in mouse multi-organ development.

ErbB tyrosine kinase receptors mediate mitogenic signal cascade by binding a variety of ligands and recruiting the different cassettes of adaptor proteins. In the present study, we examined heregulin (HRG)-induced signal transduction of... more

ErbB tyrosine kinase receptors mediate mitogenic signal cascade by binding a variety of ligands and recruiting the different cassettes of adaptor proteins. In the present study, we examined heregulin (HRG)-induced signal transduction of ErbB4 receptor and found that the phosphatidylinositol 3′-kinase (PI3K)-Akt pathway negatively regulated the extracellular signal-regulated kinase (ERK) cascade by phosphorylating Raf-1 on Ser259. As the time-course kinetics of Akt and ERK activities seemed to be transient and complex, we constructed a mathematical simulation model for HRG-induced ErbB4 receptor signalling to explain the dynamics of the regulation mechanism in this signal transduction cascade. The model reflected well the experimental results observed in HRG-induced ErbB4 cells and in other modes of growth hormone-induced cell signalling that involve Raf-Akt cross-talk. The model suggested that HRG signalling is regulated by protein phosphatase 2A as well as Raf-Akt cross-talk, and p...

AMP-activated protein kinase (AMPK) activation increases fatty acid oxidation in skeletal muscle by decreasing malonyl CoA concentrations. However, this may not explain the long-term effects of AMPK activation. Here we show that AMPK... more

AMP-activated protein kinase (AMPK) activation increases fatty acid oxidation in skeletal muscle by decreasing malonyl CoA concentrations. However, this may not explain the long-term effects of AMPK activation. Here we show that AMPK activation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) increases mRNA expression of PPARalpha target genes and PGC-1 in cultured muscle cells and mouse skeletal muscle, and that inhibition of PPARalpha and PGC-1 by siRNAs prevents AICAR-stimulated increase in fatty acid oxidation. These data suggest that a novel transcriptional regulatory mechanism involving PPARalpha and PGC-1 exists that is responsible for long-term stimulation of fatty acid oxidation in skeletal muscle by AICAR.