Effect of Perturbation Size on Perturb and Observe Mppt Research Papers (original) (raw)

9 Followers

Recent papers in Effect of Perturbation Size on Perturb and Observe Mppt

This paper proposes a modification in the maximum power point tracking (MPPT) by using model predictive control (MPC). The modification scheme of the MPPT control is based on the perturb and observe algorithm (P&O). This modified control... more

This paper proposes a modification in the
maximum power point tracking (MPPT) by using model
predictive control (MPC). The modification scheme of the
MPPT control is based on the perturb and observe algorithm
(P&O). This modified control is implemented on the dc-dc
multilevel boost converter (MLBC) to increase the response of
the controller to extract the maximum power from the
photovoltaic (PV) module and to boost a small dc voltage of it.
The total system consisting of a PV model, a MLBC and the
modified MPPT has been analyzed and then simulated with
changing the solar radiation and the temperature. The
proposed control scheme is implemented under program
MA TLAB/SIMULINK and the obtained results are validated
with real time simulation using dSPACE 1103 ControlDesk.
The real time simulation results have been provided for
principle validation.

The Maximum Power Point Tracking (MPPT) is a technique used in power electronic circuits to extract maximum energy from the Photovoltaic (PV) Systems. In the recent decades, photovoltaic power generation has become more important due its... more

The Maximum Power Point Tracking (MPPT) is a technique used in power electronic circuits to extract maximum energy from the Photovoltaic (PV) Systems. In the recent decades, photovoltaic power generation has become more important due its many benefits such as needs a few maintenance and environmental advantages and fuel free. However, there are two major barriers for the use of PV systems, low energy conversion efficiency and high initial cost. To improve the energy efficiency, it is important to work PV system always at its maximum power point. So far, many researches are conducted and many papers were published and suggested different methods for extracting maximum power point. This paper presents in details implementation of Perturb and Observe MPPT using buck and buck-boost Converters. Some results such as current, voltage and output power for each various combination have been recorded. The simulation has been accomplished in software of MATLAB Math works.

This paper proposes a method to improve the efficiency of the P&O maximum power point tracker (MPPT) by reducing the steady state oscillation and eliminating the possibility of the algorithm to lose its tracking direction. A dynamic... more

This paper proposes a method to improve the efficiency of the P&O maximum power point tracker (MPPT) by reducing the steady state oscillation and eliminating the possibility of the algorithm to lose its tracking direction. A dynamic perturbation step-size is employed to reduce the oscillation, while boundary conditions are introduced to prevent it from diverging away from the MPP. To prove its effectiveness, the proposed P&O is compared with the conventional and adaptive P&O using the Ropp, sinusoidal and ramp irradiance tests. In addition, the performances are evaluated based on a one-day (10 h) irradiance and temperature profile. The algorithm is implemented on a buck-boost converter and benchmarked by the standard MPPT efficiency (ηMPPT) calculation. It was found that, for all the tests, the ηMPPT of the proposed P&O scheme is increased by approximately two percentage points. Besides, the proposed algorithm does not require any extra hardware components; only several lines of additional software codes are to be embedded into the conventional P&O MPPT control program

The Maximum Power Point Tracking (MPPT) is a technique used in power electronic circuits to extract maximum energy from the Photovoltaic (PV) Systems. In the recent decades, photovoltaic power generation has become more important due its... more

The Maximum Power Point Tracking (MPPT) is a technique used in power electronic circuits to extract maximum energy from the Photovoltaic (PV) Systems. In the recent decades, photovoltaic power generation has become more important due its many benefits such as needs a few maintenance and environmental advantages and fuel free. However, there are two major barriers for the use of PV systems, low energy conversion efficiency and high initial cost. To improve the energy efficiency, it is important to work PV system always at its maximum power point. So far, many researches are conducted and many papers were published and suggested different methods for extracting maximum power point. This paper presents in details implementation of Perturb and Observe MPPT using buck and buck-boost Converters. Some results such as current, voltage and output power for each various combination have been recorded. The simulation has been accomplished in software of MATLAB Math works.

—This work proposes a method to reduce the steady state oscillation and to mitigate the probability of losing the tracking direction of the perturb and observed (P&O) based maximum power point tracking (MPPT) for PV system. The modified... more

—This work proposes a method to reduce the steady state oscillation and to mitigate the probability of losing the tracking direction of the perturb and observed (P&O) based maximum power point tracking (MPPT) for PV system. The modified scheme retains the conventional P&O structure, but with a unique technique to dynamically alter the perturbation size. At the same time, a dynamic boundary condition is introduced to ensure that the algorithm will not diverge from its tracking locus. The modified P&O is simulated in Matlab Simulink and its performance is benchmarked using the standard MPPT efficiency (ηMPPT) calculation. Furthermore, the proposed concept is validated experimentally using a buck-boost converter, fed by a solar PV array simulator (PVAS). Based on the EN 50530 dynamic irradiance tests, the proposed method achieved an average ηMPPT almost 1.1% higher than the conventional P&O when irradiance changes slowly and about 12% higher under fast change of irradiance.

Log In