Residual Strength Research Papers - Academia.edu (original) (raw)

Adhesive bonding technology has played an essential role in the development and growth of the rehabilitation and repair of timber structures. The ability of a structural joint to maintain satisfactory long-term performance, often in... more

Adhesive bonding technology has played an essential role in the development and growth of the rehabilitation and repair of timber structures. The ability of a structural joint to maintain satisfactory long-term performance, often in severe environments, is an important requirement of a ...

In addition to corrosion, fatigue cracking is another important factor of age related structural degradation, which has been a primary source of costly repair work of aging steel structures. Cracking damage has been found in welded joints... more

In addition to corrosion, fatigue cracking is another important factor of age related structural degradation, which has been a primary source of costly repair work of aging steel structures. Cracking damage has been found in welded joints and local areas of stress ...

Methods have been developed to describe the fatigue initiation and propagation mechanisms in flat panels as well as mechanically fastened joints and to determine the residual strength of large flat panels. Glare shows excellent crack... more

Methods have been developed to describe the fatigue initiation and propagation mechanisms in flat panels as well as mechanically fastened joints and to determine the residual strength of large flat panels. Glare shows excellent crack growth characteristics due to the mechanism of delamination and fibre bridging. The fatigue insensitive fibres restrain the crack opening and transfer load over the crack in the metal layers. During the initiation phase fibre bridging does not occur and the behaviour is dominated by the metal initiation properties. Mechanically fastened joints introduce additional effects such as secondary bending, load transfer and aspects related to the fastener installation. The residual strength of Glare is dependent on the amount of broken fibres and the delamination size and can be described with the R-curve approach. The impact resistance of Glare is related to the aluminium and glass/epoxy properties and is significantly higher than the impact resistance of mono...

The aim of this paper is to assess the performance of self-compacting glass concrete (SCGC) after exposure to four elevated temperatures of 300 °C, 500 °C, 600 °C and 800 °C. The influence of curing conditions on the high temperature... more

The aim of this paper is to assess the performance of self-compacting glass concrete (SCGC) after exposure to four elevated temperatures of 300 °C, 500 °C, 600 °C and 800 °C. The influence of curing conditions on the high temperature performance of SCGC was also investigated. For each curing regime, five SCGC mixtures were prepared with recycled glass (RG) which was used to replace natural fine aggregate at the level of 0%, 25%, 50%, 75% and 100%. After exposure to the elevated temperatures, concrete mass loss, density, water porosity, ultrasonic pulse velocity (UPV) and water sorptivity were determined and then a compressive strength test was conducted. The test results indicate that regardless of the exposure temperature, all the water cured specimens had higher residual strengths and mass losses while the water porosity and water sorptivity values were lower as compared to the corresponding air cured specimens. The incorporation of RG in the concrete mixes helped to maintain the concrete properties after the high temperature exposure due to the melting and resolidification of the recycled glass in the concrete matrix.

The primary aim of the present study is to investigate the collision resistance and residual strength of single side skin (SSS) and double side skin (DSS) bulk carriers subject to collision damage. The impact dynamics analyses were... more

The primary aim of the present study is to investigate the collision resistance and residual strength of single side skin (SSS) and double side skin (DSS) bulk carriers subject to collision damage. The impact dynamics analyses were conducted using ANSYS LS-DYNA for the evaluation resistance forces, energy absorption and penetration depth for various collision scenarios. The struck vessels of Capsize SSS and DSS designs were assumed to be entirely standstill and the striking vessels of an Aframax-type oil tanker with different bulbous bow shapes were modeled as rigid bodies. The findings were compared, where possible, with existing analytical tools. Residual strength calculations on SSS and DSS vessels were computed corresponding to all considered collision damage scenarios. Traditional Smith's method was applied with the average stress — average strain relationships of elements based on derived semi - analytically. The effect of corrosion was also evaluated by Joint Bulker Project (JBP) Rules on the influence of plate and stiffener thickness. The safety of the vessels was determined as a ratio of the ultimate hull girder strength to bending moment in damaged condition. Finally, results and insights derived from the present work are summarized.

The objectives of this research were to provide the Illinois Department of Transportation (IDOT) with an ultrathin whitetopping (UTW) thickness design method and guidelines for UTW design, concrete material selection, and construction... more

The objectives of this research were to provide the Illinois Department of Transportation (IDOT) with an ultrathin whitetopping (UTW) thickness design method and guidelines for UTW design, concrete material selection, and construction practices. A new mechanistic-empirical design method was proposed based on a modified version of the American Concrete Pavement Association (ACPA) design method for UTW. This proposed guide calculates the required UTW thickness based on traffic level, pavement layer geometry, climate, materials, and the pre-existing HMA condition. Laboratory testing of UTW concrete mixtures suggested many proportions and constituents can be successfully used as long as consideration is made to minimize the concrete’s drying shrinkage (e.g., limited cement content) and maintain the concrete- HMA bond. The laboratory testing coupled with previous fiber-reinforced concrete (FRC) slab tests suggested that structural fibers should be utilized in future UTW projects in order...