Total Antioxidant Capacity Research Papers (original) (raw)

The purpose of this study was to evaluate the ability of spermatozoa and leukocytes in semen to produce reactive oxygen species (ROS) by using nitroblue tetrazolium (NBT) staining and to examine the association between NBT staining and... more

The purpose of this study was to evaluate the ability of spermatozoa and leukocytes in semen to produce reactive oxygen species (ROS) by using nitroblue tetrazolium (NBT) staining and to examine the association between NBT staining and levels of ROS as measured by chemiluminescence. Twenty-one infertility patients (leukocytospermia; n = 8; nonleukocytospermia, n = 13) and 9 healthy donors were included. Standard semen analysis and density gradient centrifugation were performed to test NBT staining, ROS, and total antioxidant capacity. A ROS-total antioxidant capacity (ROS-TAC) score was calculated by using principal component analysis. In the leukocytospermic group, after separation on a density gradient, the percentage of NBT-positive staining was significantly higher in sperm suspensions contaminated with leukocytes (median [25th, 75th percentiles]; 70% [61%, 79%]) compared to the nonleukocytospermic group (14.5% [9%, 25.5%]; P =.03) and donors (7% [3%, 11%]; P =.02), respectively...

The total antioxidant capacity (hydrophilic plus lipophilic) of sixteen different commercial samples of pasteurized and ultra high temperature (UHT) treated milk was determined using the oxygen radical absorbance capacity assay using... more

The total antioxidant capacity (hydrophilic plus lipophilic) of sixteen different commercial samples of pasteurized and ultra high temperature (UHT) treated milk was determined using the oxygen radical absorbance capacity assay using fluorescein as a fluorescent probe. A significant correlation between the percentage of fat and the value of the total antioxidant capacity was found in milk samples obtained from the same batch of raw milk. Analyses of the whole milk, whey and deproteinized milk showed that the major contributor to the total antioxidant capacity of whole milk was the casein fractions, while albumin was the major contributor to the total antioxidant capacity of whey protein. Hydrophilic antioxidant compounds, such as vitamin C and uric acid, were the main contributors to the total antioxidant capacity of the deproteinized milk. Significant differences in total antioxidant capacities were found between whey and deproteinized samples obtained from pasteurized and UHT-treated milk, the values being higher for the former.

Overtraining syndrome is characterized by declining performance and transient inflammation following periods of severe training with major health implications for the athletes. Currently, there is no single diagnostic marker for... more

Overtraining syndrome is characterized by declining performance and transient inflammation following periods of severe training with major health implications for the athletes. Currently, there is no single diagnostic marker for overtraining. The present investigation examined the responses of oxidative stress biomarkers to a resistance training protocol of progressively increased and decreased volume/intensity. Twelve males (21.3+/-2.3 years) participated in a 12-week resistance training consisting of five 3-week periods (T1, 2 tones/week; T2, 8 tones/week; T3, 14 tones/week; T4, 2 tones/week), followed by a 3-week period of complete rest. Blood/urine samples were collected at baseline and 96 h following the last training session of each period. Performance (strength, power, jumping ability) increased after T2 and declined thereafter, indicating an overtraining response. Overtraining (T3) induced sustained leukocytosis, an increase of urinary isoprostanes (7-fold), TBARS (56%), protein carbonyls (73%), catalase (96%), glutathione peroxidase, and oxidized glutathione (GSSG) (25%) and a decline of reduced glutathione (GSH) (31%), GSH/GSSG (56%), and total antioxidant capacity. Isoprostanes and GSH/GSSG were highly (r=0.764-0.911) correlated with performance drop and training volume increase. In conclusion, overtraining induces a marked response of oxidative stress biomarkers which, in some cases, was proportional to training load, suggesting that they may serve as a tool for overtraining diagnosis.

Resumen Context: Musa paradisiaca has several biological activities within them wound healing, hypoglycemic, hepatoprotective, antimicrobial, antioxidant, among others. However, these properties in peel have been poorly explored. Aims:... more

Resumen Context: Musa paradisiaca has several biological activities within them wound healing, hypoglycemic, hepatoprotective, antimicrobial, antioxidant, among others. However, these properties in peel have been poorly explored. Aims: Evaluate the wound healing activity induced by an incision wound model using methanolic, hexanoic and chloroformic extracts from M. paradisiaca peel. Methods: Dehydrated M. paradisíaca peel was mixed with methanol, hexane, and chloroform. The presence of bioactive substances of the M. paradisiaca peel extracts was carried out by the Trease and Evans methods. Antioxidant capacity was evaluated by the 2,2-diphenyl-2-picrylhydrazyl (DPPH) method. Acute toxicity was realized according to up and down OECD procedure in BALB/c mice. Wound healing activity was evaluated in male Wistar rats. Histological analyses of tissues were made by microscopy using staining methods of hematoxylin and eosin and Masson-trichrome. Results: Treated groups with methanolic and hexanoic extracts of M. paradisiaca peel showed better wound healing activity in comparison with the group treated with chloroformic extract, with an inhibition of DPPH radical bleaching of 89-90%. It may be due to the presence of alkaloids, tannins, saponins and phenols as principal constituents by conferring antioxidant capacity. The extract did not induce any toxicity. Conclusions: The findings showed the wound healing and antioxidant capacity of M. paradisiaca peel extract. It was observed that depending on the extraction solvent; there is a variation in the antioxidant capacity that also affects the effectiveness of the restoration of tissue, suggesting that the antioxidant capacity could play a major role in the process of wound healing.

Antioxidant capacity is related with compounds capable of protecting a biological system against the potentially harmful effect of processes or reactions involving reactive oxygen and nitrogen species (ROS and RNS). These protective... more

Antioxidant capacity is related with compounds capable of protecting a biological system against the potentially harmful effect of processes or reactions involving reactive oxygen and nitrogen species (ROS and RNS). These protective effects of antioxidants have received increasing attention within biological, medical, nutritional, and agrochemical fields and resulted in the requirement of simple, convenient, and reliable antioxidant capacity determination methods. Many methods which differ from each other in terms of reaction mechanisms, oxidant and target/probe species, reaction conditions, and expression of results have been developed and tested in the literature. In this review, the methods most widely used for the determination of antioxidant capacity are evaluated, presenting the general principals, recent applications, and their strengths and limitations. Analysis conditions, substrate, and antioxidant concentration should simulate real food or biological systems as much as possible when selecting the antioxidant capacity method. The total antioxidant capacity value should include methods applicable to both lipophilic and hydrophilic antioxidants, with regards the similarity and differences of both hydrogen atom transfer and electron transfer mechanism. The methods including various ROS/RNS also have to be designed to comprehensively evaluate the antioxidant capacity of a sample.

Beside climate changes, drought stress has become a serious limitated factor for plant production and seedling growth. Arbuscular mycorrhizal fungi (AMF) symbiosis has proposed to improve the growth and water efficiency under... more

Beside climate changes, drought stress has become a serious limitated factor for plant production and seedling growth. Arbuscular mycorrhizal fungi (AMF) symbiosis has proposed to improve the growth and water efficiency under limited-water condition. For this purpose, Caucasian Hackberry (Celtis Caucasica L.) seedlings inoculate with mycorrhizal fungi Rhizophagus intraradices and Funneliformis mosseae under well-watered and water deficient conditions. The mycorrhizal and non-mycorrhizal seedlings were treated under 75 % FC (as control), 50 and 25 % FC for 90-days. The Result showed that the plant growth parameters dry shoot weight, leaf area, seedling height, dry root weight, length of root, number of secondary root, and chlorophyll content were greater in mycorrhizal seedlings in comparison with non-inoculated seedlings under normal irrigation and drought treatments. AMF symbiosis decreased H2O2 and malondialdehyde (MDA) content in leaves. The positive correlation was observed between colonization rate and plant growth as well as antioxidant enzymes activity, remarkably. These results suggest that AMF symbiosis is a potential tool to alleviating the detriment created by drought stress on young seedling by elevating plant growth, reducing membrane lipid peroxidation, raising cell wall stability and increasing the activity of antioxidant enzymes.