Viscoelastic Research Papers - Academia.edu (original) (raw)
The in vivo assessment of the biomechanical properties of the skeletal muscle is a complex issue because the muscle is an anisotropic, viscoelastic and dynamic medium. In this article, these mechanical properties are characterized for the... more
The in vivo assessment of the biomechanical properties of the skeletal muscle is a complex issue because the muscle is an anisotropic, viscoelastic and dynamic medium. In this article, these mechanical properties are characterized for the brachialis muscle in vivo using a noninvasive ultrasound-based technique. This supersonic shear imaging technique combines an ultra-fast ultrasonic system and the remote generation of transient mechanical forces into tissue via the radiation force of focused ultrasonic beams. Such an ultrasonic radiation force is induced deep within the muscle by a conventional ultrasonic probe and the resulting shear waves are then imaged with the same probe (5 MHz) at an ultra-fast framerate (up to 5000 frames/s). Local tissue velocity maps are obtained with a conventional speckle tracking technique and provide a full movie of the shear wave propagation through the entire muscle. Shear wave group velocities are then estimated using a time of flight algorithm. Thi...
- by Rana Roy
- •
- Engineering, Modeling, Finite Element, Seismic
Multimaterial 3D printing using microfluidic printheads specifically designed for seamless switching between two visco-elastic materials "on-the-fly" during fabrication is demonstrated. This approach opens new avenues for... more
Multimaterial 3D printing using microfluidic printheads specifically designed for seamless switching between two visco-elastic materials "on-the-fly" during fabrication is demonstrated. This approach opens new avenues for digital assembly of functional matter with controlled compositional and property gradients at the microscale.
Abstract[1] Glaciers in Iceland began retreating around 1890, and since then the Vatnajökull ice cap has lost over 400 km3 of ice. The associated unloading of the crust induces a glacio-isostatic response. From 1996 to 2004 a GPS network... more
Abstract[1] Glaciers in Iceland began retreating around 1890, and since then the Vatnajökull ice cap has lost over 400 km3 of ice. The associated unloading of the crust induces a glacio-isostatic response. From 1996 to 2004 a GPS network was measured around the southern edge of Vatnajökull. These measurements, together with more extended time series at several other GPS sites, indicate vertical velocities around the ice cap ranging from 9 to 25 mm/yr, and horizontal velocities in the range 3 to 4 mm/yr. The vertical velocities have been modeled using the finite element method (FEM) in order to constrain the viscosity structure beneath Vatnajökull. We use an axisymmetric Earth model with an elastic plate over a uniform viscoelastic half-space. The observations are consistent with predictions based on an Earth model made up of an elastic plate with a thickness of 10–20 km and an underlying viscosity in the range 4–10 × 1018 Pa s. Knowledge of the Earth structure allows us to predict uplift around Vatnajökull in the next decades. According to our estimates of the rheological parameters, and assuming that ice thinning will continue at a similar rate during this century (about 4 km3/year), a minimum uplift of 2.5 meters between 2000 to 2100 is expected near the current ice cap edge. If the thinning rates were to double in response to global warming (about 8 km3/year), then the minimum uplift between 2000 to 2100 near the current ice cap edge is expected to be 3.7 meters.
Ballistic impact on a polyurea retrofitted high strength structural steel plate is simulated and validated. A soft material model for polyurea, which is capable of capturing complex mechanical behavior characterized by large strains,... more
Ballistic impact on a polyurea retrofitted high strength structural steel plate is simulated and validated. A soft material model for polyurea, which is capable of capturing complex mechanical behavior characterized by large strains, hysteresis, rate sensitivity, stress softening (Mullins effect), and deviatoric and volumetric plasticity, is calibrated against several uniaxial tension experiments and a three-dimensional release wave experiment to capture both the material point and bulk behaviors. A porous plasticity model is employed to model the high strength structural steel and localization elements are included to capture adiabatic shear bands and strain localization. The computational capabilities of these models are demonstrated by the prediction of the target plate displacement, which shows excellent agreement with experiments.
- by S. Gresta
- •
- Geology, Geochemistry, Geophysics, Rheology
- by A. Muliana and +1
- •
- Engineering, Microstructure, Viscoelasticity, Modeling
This paper offers a reappraisal of Fung's model for quasi-linear viscoelasticity. It is shown that a number of negative features exhibited in other works, commonly attributed to the Fung approach, are merely a consequence of the way... more
This paper offers a reappraisal of Fung's model for quasi-linear viscoelasticity. It is shown that a number of negative features exhibited in other works, commonly attributed to the Fung approach, are merely a consequence of the way it has been applied. The approach outlined herein is shown to yield improved behaviour and offers a straightforward scheme for solving a wide range of models. Results from the new model are contrasted with those in the literature for the case of uniaxial elongation of a bar: for an imposed stretch of an incompressible bar and for an imposed load. In the latter case, a numerical solution to a Volterra integral equation is required to obtain the results. This is achieved by a high-order discretization scheme. Finally, the stretch of a compressible viscoelastic bar is determined for two distinct materials: Horgan–Murphy and Gent.
Recently, calcification was observed on implanted intraocular lens (IOL) surfaces when viscoelastic substances were applied during surgery. To elucidate the mechanisms of mineral formation, the crystallization of calcium phosphates on IOL... more
Recently, calcification was observed on implanted intraocular lens (IOL) surfaces when viscoelastic substances were applied during surgery. To elucidate the mechanisms of mineral formation, the crystallization of calcium phosphates on IOL surfaces was studied in vitro with nanomolar sensitivity using a constant composition method. Three different commercial viscoelastic materials (Viscoat®, OcuCoat®, and Amvisc® Plus) were investigated and it was found that some IOLs treated with Viscoat® or Amvisc® Plus induced the nucleation and growth of octacalcium phosphate crystallites under biological conditions. After treatments, the IOL surfaces became more hydrophilic probably because of the high viscoelastic phosphate and carboxylate contents. In contrast to Viscoat®, the use of OcuCoat® during surgery resulted in virtually no octacalcium phosphate nucleations. Calcification studies of IOL surfaces treated with fatty acids, which are present in human aqueous humor, suggest that hydrophobic cyclic silicones adsorbed on the IOL surfaces interact strongly with hydrophobic hydrocarbon chains of the fatty acids, creating a layer of amphiphiles oriented with functional carboxylate groups exposed to the aqueous solution and serving as active calcification sites. © 2004 Wiley Periodicals, Inc. J Biomed Mater Res 71A: 488–496, 2004