Опыт Юнга | это... Что такое Опыт Юнга? (original) (raw)

Просмотр этого шаблона Квантовая механика
\Delta x\cdot\Delta p_x \geqslant \frac{\hbar}{2}
Принцип неопределённости
Введение Математические основы
Основа Классическая механика · Постоянная Планка · Интерференция · Бра и кет · Гамильтониан Фундаментальные понятия Квантовое состояние · Квантовая наблюдаемая · Волновая функция · Квантовая суперпозиция · Квантовая запутанность · Смешанное состояние · Измерение · Неопределённость · Принцип Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннельный эффект Эксперименты Опыт Дэвиссона — Джермера · Опыт Поппера · Опыт Штерна — Герлаха · Опыт Юнга · Проверка неравенств Белла · Фотоэффект · Эффект Комптона Формулировки Представление Шрёдингера · Представление Гейзенберга · Представление взаимодействия · Матричная квантовая механика · Интегралы по траекториям · Диаграммы Фейнмана Уравнения Уравнение Шрёдингера · Уравнение Паули · Уравнение Клейна — Гордона · Уравнение Дирака · Уравнение фон Неймана · Уравнение Блоха · Уравнение Линдблада · Уравнение Гейзенберга Интерпретации Копенгагенская · Теория скрытых параметров · Многомировая Развитие теории Квантовая теория поля · Квантовая электродинамика · Теория Глэшоу — Вайнберга — Салама · Квантовая хромодинамика · Стандартная модель · Квантовая гравитация Сложные темы Квантовая теория поля · Квантовая гравитация · Теория всего Известные учёные Планк · Эйнштейн · Шрёдингер · Гейзенберг · Йордан · Бор · Паули · Дирак · Фок · Борн · де Бройль · Ландау · Фейнман · Бом · Эверетт
См. также: Портал:Физика

Опыт Юнга — эксперимент, проведённый Томасом Юнгом и ставший экспериментальным доказательством волновой теории света. Результаты эксперимента были опубликованы в 1803 году.

В опыте пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Этот опыт демонстрирует интерференцию света, что является доказательством волновой теории. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. Ниже рассматривается влияние ширины прорезей на интерференцию.

Если исходить из того, что свет состоит из частиц (корпускулярная теория света), то на проекционном экране можно было бы увидеть только две параллельных полосы света, прошедших через прорези ширмы. Между ними проекционный экран оставался бы практически неосвещенным.

С другой стороны, если предположить, что свет представляет собой распространяющиеся волны (волновая теория света), то, согласно принципу Гюйгенса, каждая прорезь является источником вторичных волн.

Если вторичные волны достигнут линии в середине проекционного экрана, находящейся на равном удалении от прорезей, синхронно и в одной фазе, то на серединной линии экрана их амплитуды прибавятся, что создаст максимум яркости. То есть, максимум яркости окажется там, где согласно корпускулярной теории, яркость должна быть практически нулевой. Корпускулярная теория света является неверной, когда прорези достаточно тонкие, создавая тем самым интерференцию.

На определенном удалении от центральной линии, напротив, волны окажутся в противофазе — их амплитуды компенсируются, что создаст минимум яркости (темная полоса). По мере дальнейшего удаления от средней линии яркость периодически изменяется, возрастая до максимума и снова убывая.

На проекционном экране получается целый ряд чередующихся интерференционных полос, что и было продемонстрировано Томасом Юнгом.

Содержание

Интерференция и квантовая теория

Каждое событие, как например прохождение света от источника S до точки M на экране через отверстие S_1 может быть представлена в виде вектора \vec{V}_1.

Для того, чтобы знать вероятность того, что свет дойдет из источника S до точки M, нужно брать во внимание все возможные пути света из точки S до точки М. В квантовой механике этот принцип является фундаментальным. Для получения вероятности P того, что свет дойдет из точки S до точки М, используется следующая аксиома квантовой механики:

P=|\phi_1+\phi_2|^2

где:

P=|2\phi_1|^2=4|\phi_1|^2

P=|\phi_1-\phi_1|^2=0

Изменение фазы подобно вращению векторов. Сумма двух векторов изменяется от нуля, до максимума 2 V_1.

Эксперимент с точечным источником света

Опыт Юнга

Пусть S — точечный источник света, расположенный перед экраном с двумя параллельными прорезями S_1 и S_2, а — расстояние между прорезями, и D — расстояние между экраном с прорезями и проекционным экраном.
Точка М на экране имеет для начала одну координату x — расстояние между М и ортогональной проекцией S на экране.

Существование интерференций зависит от разницы оптической длины между первым и вторым путем. Пусть М — точка экрана, на которую падают одновременно два луча из S_1 и S_2. Записав \delta — разницу оптической длины путей, имеем следующее соотношение:

\delta = (S_2M)-(S_1M)\,

где:

Если a<<D и x<<D, то разница оптической длины пути в среде, с показателем преломления n, принимает упрощенное выражение:

\delta = \frac{nax}{D}

В воздухе (при обычных условиях) n \approx 1. Выражение \delta принимает вид:

\delta \approx \frac{ax}{D}

Освещённость — Е в точке М связана с разницей оптической длины путей следующим соотношением:

E=2E_0\left[1+cos\left(\frac{2\pi \delta(M)}{\lambda}\right)\right]

Освещенность экрана

где:

Освещенность периодически изменяется от нуля до 4E_0, что свидетельствует об интерференции света.

Яркие полосы на экране появляются, когда \delta=p\lambda\,, где p\in \mathbb{N}.

Темные полосы на экране появляются, когда \delta=\frac{2p+1}{2}\lambda.

Условия для интерференций

Когерентность источника света

Влияние ширины прорезей

Интерференции появляются на экране, когда ширина прорезей близка к длине волны излучаемого монохроматического света. Когда ширина прорезей увеличивается, освещенность экрана уменьшается и интерференции исчезают.

Ссылки