std::ranges::fold_left_first_with_iter, std::ranges::fold_left_first_with_iter_result - cppreference.com (original) (raw)
| Defined in header | ||
|---|---|---|
| Call signature | ||
| template< std::input_iterator I, std::sentinel_for<I> S, /*indirectly-binary-left-foldable*/<std::iter_value_t<I>, I> F >requires std::constructible_from< std::iter_value_t<I>, std::iter_reference_t<I>> constexpr /* see description */ fold_left_first_with_iter( I first, S last, F f ); | (1) | (since C++23) |
| template< ranges::input_range R, /*indirectly-binary-left-foldable*/< ranges::range_value_t<R>, ranges::iterator_t<R>> F >requires std::constructible_from< ranges::range_value_t<R>, ranges::range_reference_t<R>> constexpr /* see description */ fold_left_first_with_iter( R&& r, F f ); | (2) | (since C++23) |
| Helper concepts | ||
| template< class F, class T, class I >concept /*indirectly-binary-left-foldable*/ = /* see description */; | (3) | (exposition only*) |
| Helper class template | ||
| template< class I, class T > using fold_left_first_with_iter_result = ranges::in_value_result<I, T>; | (4) | (since C++23) |
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(x1, x2), x3), ...), xn), where x1, x2, ..., xn are elements of the range.
Informally, ranges::fold_left_first_with_iter behaves like std::accumulate's overload that accepts a binary predicate, except that the *first is used internally as an initial element.
The behavior is undefined if [first, last) is not a valid range.
The range is
[first,last).Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.
Equivalent to:
| Helper concepts | ||
|---|---|---|
| template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = std::movable<T> && std::movable<U> && std::convertible_to<T, U> && std::invocable<F&, U, std::iter_reference_t<I>> && std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>; | (3A) | (exposition only*) |
| template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = std::copy_constructible<F> && std::indirectly_readable<I> && std::invocable<F&, T, std::iter_reference_t<I>> && std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> && /*indirectly-binary-left-foldable-impl*/<F, T, I, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>; | (3B) | (exposition only*) |
- The return type alias. See "Return value" section for details.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents
- 1 Parameters
- 2 Return value
- 3 Possible implementations
- 4 Complexity
- 5 Notes
- 6 Example
- 7 References
- 8 See also
[edit] Parameters
| first, last | - | the iterator-sentinel pair defining the range of elements to fold |
|---|---|---|
| r | - | the range of elements to fold |
| f | - | the binary function object |
[edit] Return value
Let U be decltype(ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f)).
- An object of type ranges::fold_left_first_with_iter_result<I, std::optional<U>>.
- The member ranges::in_value_result::in holds an iterator to the end of the range.
- The member ranges::in_value_result::value holds the result of the left-fold of given range over f.
If the range is empty, the return value is {std::move(first), std::optional<U>()}.
[edit] Possible implementations
class fold_left_first_with_iter_fn { template<class O, class I, class S, class F> constexpr auto impl(I&& first, S&& last, F f) const { using U = decltype( ranges::fold_left(std::move(first), last, std::iter_value_t(*first), f) ); using Ret = ranges::fold_left_first_with_iter_result<O, std::optional>; if (first == last) return Ret{std::move(first), std::optional()}; std::optional init(std::in_place, *first); for (++first; first != last; ++first) *init = std::invoke(f, std::move(*init), *first); return Ret{std::move(first), std::move(init)}; } public: template<std::input_iterator I, std::sentinel_for S, /indirectly-binary-left-foldable/<std::iter_value_t, I> F> requires std::constructible_from<std::iter_value_t, std::iter_reference_t> constexpr auto operator()(I first, S last, F f) const { return impl(std::move(first), std::move(last), std::ref(f)); } template<ranges::input_range R, /*indirectly-binary-left-foldable*/< ranges::range_value_t, ranges::iterator_t> F> requires std::constructible_from<ranges::range_value_t, ranges::range_reference_t> constexpr auto operator()(R&& r, F f) const { return impl<ranges::borrowed_iterator_t>( ranges::begin(r), ranges::end(r), std::ref(f) ); } }; inline constexpr fold_left_first_with_iter_fn fold_left_first_with_iter;
[edit] Complexity
Exactly ranges::distance(first, last) - 1 (assuming the range is not empty) applications of the function object f.
[edit] Notes
The following table compares all constrained folding algorithms:
| Fold function template | Starts from | Initial value | Return type |
|---|---|---|---|
| ranges::fold_left | left | init | U |
| ranges::fold_left_first | left | first element | std::optional<U> |
| ranges::fold_right | right | init | U |
| ranges::fold_right_last | right | last element | std::optional<U> |
| ranges::fold_left_with_iter | left | init | (1) ranges::in_value_result<I, U> (2) ranges::in_value_result<BR, U>,where BR is ranges::borrowed_iterator_t<R> |
| ranges::fold_left_first_with_iter | left | first element | (1) ranges::in_value_result<I, std::optional<U>> (2) ranges::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R> |
| Feature-test macro | Value | Std | Feature |
|---|---|---|---|
| __cpp_lib_ranges_fold | 202207L | (C++23) | std::ranges fold algorithms |
[edit] Example
#include #include #include #include #include #include #include int main() { std::vector v{1, 2, 3, 4, 5, 6, 7, 8}; auto sum = std::ranges::fold_left_first_with_iter ( v.begin(), v.end(), std::plus() ); std::cout << "sum: " << sum.value.value() << '\n'; assert(sum.in == v.end()); auto mul = std::ranges::fold_left_first_with_iter(v, std::multiplies()); std::cout << "mul: " << mul.value.value() << '\n'; assert(mul.in == v.end()); // get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 7.f}}; auto sec = std::ranges::fold_left_first_with_iter ( data | std::ranges::views::values, std::multiplies<>() ); std::cout << "sec: " << sec.value.value() << '\n'; // use a program defined function object (lambda-expression): auto lambda = [](int x, int y) { return x + y + 2; }; auto val = std::ranges::fold_left_first_with_iter(v, lambda); std::cout << "val: " << val.value.value() << '\n'; assert(val.in == v.end()); }
Output:
sum: 36 mul: 40320 sec: 42 val: 50
[edit] References
C++23 standard (ISO/IEC 14882:2024):
27.6.18 Fold [alg.fold]
[edit] See also
| ranges::fold_left(C++23) | left-folds a range of elements(algorithm function object)[edit] |
|---|---|
| ranges::fold_left_first(C++23) | left-folds a range of elements using the first element as an initial value(algorithm function object)[edit] |
| ranges::fold_right(C++23) | right-folds a range of elements(algorithm function object)[edit] |
| ranges::fold_right_last(C++23) | right-folds a range of elements using the last element as an initial value(algorithm function object)[edit] |
| ranges::fold_left_with_iter(C++23) | left-folds a range of elements, and returns a pair (iterator, value)(algorithm function object)[edit] |
| accumulate | sums up or folds a range of elements (function template) [edit] |
| reduce(C++17) | similar to std::accumulate, except out of order (function template) [edit] |