std::ranges::fold_right - cppreference.com (original) (raw)
| Defined in header | ||
|---|---|---|
| Call signature | ||
| (1) | ||
| template< std::bidirectional_iterator I, std::sentinel_for<I> S, class T, /* indirectly-binary-right-foldable */<T, I> F > constexpr auto fold_right( I first, S last, T init, F f ); | (since C++23) (until C++26) | |
| template< std::bidirectional_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-right-foldable */<T, I> F > constexpr auto fold_right( I first, S last, T init, F f ); | (since C++26) | |
| (2) | ||
| template< ranges::bidirectional_range R, class T, /* indirectly-binary-right-foldable */ <T, ranges::iterator_t<R>> F > constexpr auto fold_right( R&& r, T init, F f ); | (since C++23) (until C++26) | |
| template< ranges::bidirectional_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-right-foldable */ <T, ranges::iterator_t<R>> F > constexpr auto fold_right( R&& r, T init, F f ); | (since C++26) | |
| Helper concepts | ||
| template< class F, class T, class I >concept /* indirectly-binary-left-foldable */ = /* see description */; | (3) | (exposition only*) |
| template< class F, class T, class I >concept /* indirectly-binary-right-foldable */ = /* see description */; | (4) | (exposition only*) |
Right-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(x1, f(x2, ...f(xn, init))), where x1, x2, ..., xn are elements of the range.
Informally, ranges::fold_right behaves like ranges::fold_left(views::reverse(r), init, /*flipped*/(f)).
The behavior is undefined if [first, last) is not a valid range.
The range is
[first,last).Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.
Equivalent to:
| Helper concepts | ||
|---|---|---|
| template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = std::movable<T> && std::movable<U> && std::convertible_to<T, U> && std::invocable<F&, U, std::iter_reference_t<I>> && std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>; | (3A) | (exposition only*) |
| template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = std::copy_constructible<F> && std::indirectly_readable<I> && std::invocable<F&, T, std::iter_reference_t<I>> && std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> && /*indirectly-binary-left-foldable-impl*/<F, T, I, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>; | (3B) | (exposition only*) |
- Equivalent to:
| Helper concepts | ||
|---|---|---|
| template< class F, class T, class I > concept /*indirectly-binary-right-foldable*/ = /*indirectly-binary-left-foldable*/</*flipped*/<F>, T, I>; | (4A) | (exposition only*) |
| Helper class templates | ||
| template< class F > class /*flipped*/ { F f; // exposition only public: template< class T, class U > requires std::invocable<F&, U, T> std::invoke_result_t<F&, U, T> operator()( T&&, U&& ); }; | (4B) | (exposition only*) |
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents
- 1 Parameters
- 2 Return value
- 3 Possible implementations
- 4 Complexity
- 5 Notes
- 6 Example
- 7 References
- 8 See also
[edit] Parameters
| first, last | - | the iterator-sentinel pair defining the range of elements to fold |
|---|---|---|
| r | - | the range of elements to fold |
| init | - | the initial value of the fold |
| f | - | the binary function object |
[edit] Return value
An object of type U that contains the result of right-fold of the given range over f, where U is equivalent to std::decay_t<std::invoke_result_t<F&, std::iter_reference_t<I>, T>>;.
If the range is empty, U(std::move(init)) is returned.
[edit] Possible implementations
struct fold_right_fn { template<std::bidirectional_iterator I, std::sentinel_for S, class T = std::iter_value_t, /* indirectly-binary-right-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, std::iter_reference_t, T>>; if (first == last) return U(std::move(init)); I tail = ranges::next(first, last); U accum = std::invoke(f, *--tail, std::move(init)); while (first != tail) accum = std::invoke(f, --tail, std::move(accum)); return accum; } template<ranges::bidirectional_range R, class T = ranges::range_value_t, / indirectly-binary-right-foldable */<T, ranges::iterator_t> F> constexpr auto operator()(R&& r, T init, F f) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(init), std::ref(f)); } }; inline constexpr fold_right_fn fold_right;
[edit] Complexity
Exactly ranges::distance(first, last) applications of the function object f.
[edit] Notes
The following table compares all constrained folding algorithms:
| Fold function template | Starts from | Initial value | Return type |
|---|---|---|---|
| ranges::fold_left | left | init | U |
| ranges::fold_left_first | left | first element | std::optional<U> |
| ranges::fold_right | right | init | U |
| ranges::fold_right_last | right | last element | std::optional<U> |
| ranges::fold_left_with_iter | left | init | (1) ranges::in_value_result<I, U> (2) ranges::in_value_result<BR, U>,where BR is ranges::borrowed_iterator_t<R> |
| ranges::fold_left_first_with_iter | left | first element | (1) ranges::in_value_result<I, std::optional<U>> (2) ranges::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R> |
| Feature-test macro | Value | Std | Feature |
|---|---|---|---|
| __cpp_lib_ranges_fold | 202207L | (C++23) | std::ranges fold algorithms |
| __cpp_lib_algorithm_default_value_type | 202403L | (C++26) | List-initialization for algorithms (1,2) |
[edit] Example
#include #include #include #include #include #include #include #include using namespace std::literals; namespace ranges = std::ranges; int main() { auto v = {1, 2, 3, 4, 5, 6, 7, 8}; std::vector<std::string> vs{"A", "B", "C", "D"}; auto r1 = ranges::fold_right(v.begin(), v.end(), 6, std::plus<>()); // (1) std::cout << "r1: " << r1 << '\n'; auto r2 = ranges::fold_right(vs, "!"s, std::plus<>()); // (2) std::cout << "r2: " << r2 << '\n'; // Use a program defined function object (lambda-expression): std::string r3 = ranges::fold_right ( v, "A", [](int x, std::string s) { return s + ':' + std::to_string(x); } ); std::cout << "r3: " << r3 << '\n'; // Get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data{{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; float r4 = ranges::fold_right ( data | ranges::views::values, 2.0f, std::multiplies<>() ); std::cout << "r4: " << r4 << '\n'; using CD = std::complex; std::vector nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto r5 = ranges::fold_right(nums, {7, 0}, std::multiplies{}); #else auto r5 = ranges::fold_right(nums, CD{7, 0}, std::multiplies{}); #endif std::cout << "r5: " << r5 << '\n'; }
Output:
r1: 42 r2: ABCD! r3: A:8:7:6:5:4:3:2:1 r4: 42 r5: (42,42)
[edit] References
C++23 standard (ISO/IEC 14882:2024):
27.6.18 Fold [alg.fold]
[edit] See also
| ranges::fold_right_last(C++23) | right-folds a range of elements using the last element as an initial value(algorithm function object)[edit] |
|---|---|
| ranges::fold_left(C++23) | left-folds a range of elements(algorithm function object)[edit] |
| ranges::fold_left_first(C++23) | left-folds a range of elements using the first element as an initial value(algorithm function object)[edit] |
| ranges::fold_left_with_iter(C++23) | left-folds a range of elements, and returns a pair (iterator, value)(algorithm function object)[edit] |
| ranges::fold_left_first_with_iter(C++23) | left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)(algorithm function object)[edit] |
| accumulate | sums up or folds a range of elements (function template) [edit] |
| reduce(C++17) | similar to std::accumulate, except out of order (function template) [edit] |