std::ranges::fold_left - cppreference.com (original) (raw)
| Defined in header | ||
|---|---|---|
| Call signature | ||
| (1) | ||
| template< std::input_iterator I, std::sentinel_for<I> S, class T, /* indirectly-binary-left-foldable */<T, I> F > constexpr auto fold_left( I first, S last, T init, F f ); | (since C++23) (until C++26) | |
| template< std::input_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-left-foldable */<T, I> F > constexpr auto fold_left( I first, S last, T init, F f ); | (since C++26) | |
| (2) | ||
| template< ranges::input_range R, class T, /* indirectly-binary-left-foldable */ <T, ranges::iterator_t<R>> F > constexpr auto fold_left( R&& r, T init, F f ); | (since C++23) (until C++26) | |
| template< ranges::input_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-left-foldable */ <T, ranges::iterator_t<R>> F > constexpr auto fold_left( R&& r, T init, F f ); | (since C++26) | |
| Helper concepts | ||
| template< class F, class T, class I >concept /* indirectly-binary-left-foldable */ = /* see description */; | (3) | (exposition only*) |
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(init, x1), x2), ...), xn), where x1, x2, ..., xn are elements of the range.
Informally, ranges::fold_left behaves like std::accumulate's overload that accepts a binary predicate.
The behavior is undefined if [first, last) is not a valid range.
The range is
[first,last). Equivalent toreturn ranges::fold_left_with_iter(std::move(first), last, std::move(init), f).value.Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.
Equivalent to:
| Helper concepts | ||
|---|---|---|
| template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = std::movable<T> && std::movable<U> && std::convertible_to<T, U> && std::invocable<F&, U, std::iter_reference_t<I>> && std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>; | (3A) | (exposition only*) |
| template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = std::copy_constructible<F> && std::indirectly_readable<I> && std::invocable<F&, T, std::iter_reference_t<I>> && std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> && /*indirectly-binary-left-foldable-impl*/<F, T, I, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>; | (3B) | (exposition only*) |
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents
- 1 Parameters
- 2 Return value
- 3 Possible implementations
- 4 Complexity
- 5 Notes
- 6 Example
- 7 References
- 8 See also
[edit] Parameters
| first, last | - | the iterator-sentinel pair defining the range of elements to fold |
|---|---|---|
| r | - | the range of elements to fold |
| init | - | the initial value of the fold |
| f | - | the binary function object |
[edit] Return value
An object of type U that contains the result of left-fold of the given range over f, where U is equivalent to std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>.
If the range is empty, U(std::move(init)) is returned.
[edit] Possible implementations
struct fold_left_fn { template<std::input_iterator I, std::sentinel_for S, class T = std::iter_value_t, /* indirectly-binary-left-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t>>; if (first == last) return U(std::move(init)); U accum = std::invoke(f, std::move(init), *first); for (++first; first != last; ++first) accum = std::invoke(f, std::move(accum), first); return std::move(accum); } template<ranges::input_range R, class T = ranges::range_value_t, / indirectly-binary-left-foldable */<T, ranges::iterator_t> F> constexpr auto operator()(R&& r, T init, F f) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(init), std::ref(f)); } }; inline constexpr fold_left_fn fold_left;
[edit] Complexity
Exactly ranges::distance(first, last) applications of the function object f.
[edit] Notes
The following table compares all constrained folding algorithms:
| Fold function template | Starts from | Initial value | Return type |
|---|---|---|---|
| ranges::fold_left | left | init | U |
| ranges::fold_left_first | left | first element | std::optional<U> |
| ranges::fold_right | right | init | U |
| ranges::fold_right_last | right | last element | std::optional<U> |
| ranges::fold_left_with_iter | left | init | (1) ranges::in_value_result<I, U> (2) ranges::in_value_result<BR, U>,where BR is ranges::borrowed_iterator_t<R> |
| ranges::fold_left_first_with_iter | left | first element | (1) ranges::in_value_result<I, std::optional<U>> (2) ranges::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R> |
| Feature-test macro | Value | Std | Feature |
|---|---|---|---|
| __cpp_lib_ranges_fold | 202207L | (C++23) | std::ranges fold algorithms |
| __cpp_lib_algorithm_default_value_type | 202403L | (C++26) | List-initialization for algorithms (1,2) |
[edit] Example
#include #include #include #include #include #include #include #include int main() { namespace ranges = std::ranges; std::vector v{1, 2, 3, 4, 5, 6, 7, 8}; int sum = ranges::fold_left(v.begin(), v.end(), 0, std::plus()); // (1) std::cout << "sum: " << sum << '\n'; int mul = ranges::fold_left(v, 1, std::multiplies()); // (2) std::cout << "mul: " << mul << '\n'; // get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; float sec = ranges::fold_left ( data | ranges::views::values, 2.0f, std::multiplies<>() ); std::cout << "sec: " << sec << '\n'; // use a program defined function object (lambda-expression): std::string str = ranges::fold_left ( v, "A", s, int x) { return s + ':' + std::to_string(x); } ); std::cout << "str: " << str << '\n'; using CD = std::complex; std::vector nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto res = ranges::fold_left(nums, {7, 0}, std::multiplies{}); // (2) #else auto res = ranges::fold_left(nums, CD{7, 0}, std::multiplies{}); // (2) #endif std::cout << "res: " << res << '\n'; }
Output:
sum: 36 mul: 40320 sec: 42 str: A:1:2:3:4:5:6:7:8 res: (42,42)
[edit] References
C++23 standard (ISO/IEC 14882:2024):
27.6.18 Fold [alg.fold]
[edit] See also
| ranges::fold_left_first(C++23) | left-folds a range of elements using the first element as an initial value(algorithm function object)[edit] |
|---|---|
| ranges::fold_right(C++23) | right-folds a range of elements(algorithm function object)[edit] |
| ranges::fold_right_last(C++23) | right-folds a range of elements using the last element as an initial value(algorithm function object)[edit] |
| ranges::fold_left_with_iter(C++23) | left-folds a range of elements, and returns a pair (iterator, value)(algorithm function object)[edit] |
| ranges::fold_left_first_with_iter(C++23) | left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)(algorithm function object)[edit] |
| accumulate | sums up or folds a range of elements (function template) [edit] |
| reduce(C++17) | similar to std::accumulate, except out of order (function template) [edit] |