std::ranges::fold_left_with_iter, std::ranges::fold_left_with_iter_result - cppreference.com (original) (raw)
| Defined in header | ||
|---|---|---|
| Call signature | ||
| (1) | ||
| template< std::input_iterator I, std::sentinel_for<I> S, class T, /* indirectly-binary-left-foldable */<T, I> F > constexpr /* see description */ fold_left_with_iter( I first, S last, T init, F f ); | (since C++23) (until C++26) | |
| template< std::input_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-left-foldable */<T, I> F > constexpr /* see description */ fold_left_with_iter( I first, S last, T init, F f ); | (since C++26) | |
| (2) | ||
| template< ranges::input_range R, class T, /* indirectly-binary-left-foldable */ <T, ranges::iterator_t<R>> F > constexpr /* see description */ fold_left_with_iter( R&& r, T init, F f ); | (since C++23) (until C++26) | |
| template< ranges::input_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-left-foldable */ <T, ranges::iterator_t<R>> F > constexpr /* see description */ fold_left_with_iter( R&& r, T init, F f ); | (since C++26) | |
| Helper concepts | ||
| template< class F, class T, class I >concept /* indirectly-binary-left-foldable */ = /* see description */; | (3) | (exposition only*) |
| Helper class template | ||
| template< class I, class T > using fold_left_with_iter_result = ranges::in_value_result<I, T>; | (4) | (since C++23) |
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(init, x1), x2), ...), xn), where x1, x2, ..., xn are elements of the range.
Informally, ranges::fold_left_with_iter behaves like std::accumulate's overload that accepts a binary predicate.
The behavior is undefined if [first, last) is not a valid range.
The range is
[first,last).Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.
Equivalent to:
| Helper concepts | ||
|---|---|---|
| template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = std::movable<T> && std::movable<U> && std::convertible_to<T, U> && std::invocable<F&, U, std::iter_reference_t<I>> && std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>; | (3A) | (exposition only*) |
| template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = std::copy_constructible<F> && std::indirectly_readable<I> && std::invocable<F&, T, std::iter_reference_t<I>> && std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> && /*indirectly-binary-left-foldable-impl*/<F, T, I, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>; | (3B) | (exposition only*) |
- The return type alias. See "Return value" section for details.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents
- 1 Parameters
- 2 Return value
- 3 Possible implementations
- 4 Complexity
- 5 Notes
- 6 Example
- 7 References
- 8 See also
[edit] Parameters
| first, last | - | the iterator-sentinel pair defining the range of elements to fold |
|---|---|---|
| r | - | the range of elements to fold |
| init | - | the initial value of the fold |
| f | - | the binary function object |
[edit] Return value
Let U be std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>.
- An object of type ranges::fold_left_with_iter_result<I, U>.
- The member ranges::in_value_result::in holds an iterator to the end of the range.
- The member ranges::in_value_result::value holds the result of the left-fold of given range over f.
If the range is empty, the return value is obtained via the expression equivalent to return {std::move(first), U(std::move(init))};.
- Same as (1) except that the return type is ranges::fold_left_with_iter_result<ranges::borrowed_iterator_t<R>, U>.
[edit] Possible implementations
class fold_left_with_iter_fn { template<class O, class I, class S, class T, class F> constexpr auto impl(I&& first, S&& last, T&& init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t>>; using Ret = ranges::fold_left_with_iter_result<O, U>; if (first == last) return Ret{std::move(first), U(std::move(init))}; U accum = std::invoke(f, std::move(init), *first); for (++first; first != last; ++first) accum = std::invoke(f, std::move(accum), first); return Ret{std::move(first), std::move(accum)}; } public: template<std::input_iterator I, std::sentinel_for S, class T = std::iter_value_t, / indirectly-binary-left-foldable /<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { return impl(std::move(first), std::move(last), std::move(init), std::ref(f)); } template<ranges::input_range R, class T = ranges::range_value_t, / indirectly-binary-left-foldable */<T, ranges::iterator_t> F> constexpr auto operator()(R&& r, T init, F f) const { return impl<ranges::borrowed_iterator_t> ( ranges::begin(r), ranges::end(r), std::move(init), std::ref(f) ); } }; inline constexpr fold_left_with_iter_fn fold_left_with_iter;
[edit] Complexity
Exactly ranges::distance(first, last) applications of the function object f.
[edit] Notes
The following table compares all constrained folding algorithms:
| Fold function template | Starts from | Initial value | Return type |
|---|---|---|---|
| ranges::fold_left | left | init | U |
| ranges::fold_left_first | left | first element | std::optional<U> |
| ranges::fold_right | right | init | U |
| ranges::fold_right_last | right | last element | std::optional<U> |
| ranges::fold_left_with_iter | left | init | (1) ranges::in_value_result<I, U> (2) ranges::in_value_result<BR, U>,where BR is ranges::borrowed_iterator_t<R> |
| ranges::fold_left_first_with_iter | left | first element | (1) ranges::in_value_result<I, std::optional<U>> (2) ranges::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R> |
| Feature-test macro | Value | Std | Feature |
|---|---|---|---|
| __cpp_lib_ranges_fold | 202207L | (C++23) | std::ranges fold algorithms |
| __cpp_lib_algorithm_default_value_type | 202403L | (C++26) | List-initialization for algorithms (1,2) |
[edit] Example
#include #include #include #include #include #include #include int main() { namespace ranges = std::ranges; std::vector v{1, 2, 3, 4, 5, 6, 7, 8}; auto sum = ranges::fold_left_with_iter(v.begin(), v.end(), 6, std::plus()); assert(sum.value == 42); assert(sum.in == v.end()); auto mul = ranges::fold_left_with_iter(v, 0X69, std::multiplies()); assert(mul.value == 4233600); assert(mul.in == v.end()); // Get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; auto sec = ranges::fold_left_with_iter ( data | ranges::views::values, 2.0f, std::multiplies<>() ); assert(sec.value == 42); // Use a program defined function object (lambda-expression): auto lambda = [](int x, int y){ return x + 0B110 + y; }; auto val = ranges::fold_left_with_iter(v, -42, lambda); assert(val.value == 42); assert(val.in == v.end()); using CD = std::complex; std::vector nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto res = ranges::fold_left_with_iter(nums, {7, 0}, std::multiplies{}); #else auto res = ranges::fold_left_with_iter(nums, CD{7, 0}, std::multiplies{}); #endif assert((res.value == CD{42, 42})); }
[edit] References
C++23 standard (ISO/IEC 14882:2024):
27.6.18 Fold [alg.fold]
[edit] See also
| ranges::fold_left(C++23) | left-folds a range of elements(algorithm function object)[edit] |
|---|---|
| ranges::fold_left_first(C++23) | left-folds a range of elements using the first element as an initial value(algorithm function object)[edit] |
| ranges::fold_right(C++23) | right-folds a range of elements(algorithm function object)[edit] |
| ranges::fold_right_last(C++23) | right-folds a range of elements using the last element as an initial value(algorithm function object)[edit] |
| ranges::fold_left_first_with_iter(C++23) | left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)(algorithm function object)[edit] |
| accumulate | sums up or folds a range of elements (function template) [edit] |
| reduce(C++17) | similar to std::accumulate, except out of order (function template) [edit] |