std::ranges::fold_right_last - cppreference.com (original) (raw)

Defined in header
Call signature
template< std::bidirectional_iterator I, std::sentinel_for<I> S, /*indirectly-binary-right-foldable*/<std::iter_value_t<I>, I> F >requires std::constructible_from< std::iter_value_t<I>, std::iter_reference_t<I>> constexpr auto fold_right_last( I first, S last, F f ); (1) (since C++23)
template< ranges::bidirectional_range R, /*indirectly-binary-right-foldable*/< ranges::range_value_t<R>, ranges::iterator_t<R>> F >requires std::constructible_from< ranges::range_value_t<R>, ranges::range_reference_t<R>> constexpr auto fold_right_last( R&& r, F f ); (2) (since C++23)
Helper concepts
template< class F, class T, class I >concept /*indirectly-binary-left-foldable*/ = /* see description */; (3) (exposition only*)
template< class F, class T, class I >concept /*indirectly-binary-right-foldable*/ = /* see description */; (4) (exposition only*)

Right-folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(x1, f(x2, ...f(xn-1, xn))), where x1, x2, ..., xn are elements of the range.

Informally, ranges::fold_right_last behaves like ranges::fold_left(views::reverse(r), *--last, /*flipped*/(f)) (assuming the range is not empty).

The behavior is undefined if [first, last) is not a valid range.

  1. Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last.

  2. Equivalent to:

Helper concepts
template< class F, class T, class I, class U > concept /*indirectly-binary-left-foldable-impl*/ = std::movable<T> && std::movable<U> && std::convertible_to<T, U> && std::invocable<F&, U, std::iter_reference_t<I>> && std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>; (3A) (exposition only*)
template< class F, class T, class I > concept /*indirectly-binary-left-foldable*/ = std::copy_constructible<F> && std::indirectly_readable<I> && std::invocable<F&, T, std::iter_reference_t<I>> && std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> && /*indirectly-binary-left-foldable-impl*/<F, T, I, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>; (3B) (exposition only*)
  1. Equivalent to:
Helper concepts
template< class F, class T, class I > concept /*indirectly-binary-right-foldable*/ = /*indirectly-binary-left-foldable*/</*flipped*/<F>, T, I>; (4A) (exposition only*)
Helper class templates
template< class F > class /*flipped*/ { F f; // exposition only public: template< class T, class U > requires std::invocable<F&, U, T> std::invoke_result_t<F&, U, T> operator()( T&&, U&& ); }; (4B) (exposition only*)

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit] Parameters

first, last - the iterator-sentinel pair defining the range of elements to fold
r - the range of elements to fold
f - the binary function object

[edit] Return value

An object of type std::optional<U> that contains the result of right-fold of the given range over f.

If the range is empty, std::optional<U>() is returned.

[edit] Possible implementations

struct fold_right_last_fn { template<std::bidirectional_iterator I, std::sentinel_for S, /indirectly-binary-right-foldable/<std::iter_value_t, I> F> requires std::constructible_from<std::iter_value_t, std::iter_reference_t> constexpr auto operator()(I first, S last, F f) const { using U = decltype( ranges::fold_right(first, last, std::iter_value_t(*first), f));   if (first == last) return std::optional(); I tail = ranges::prev(ranges::next(first, std::move(last))); return std::optional(std::in_place, ranges::fold_right(std::move(first), tail, std::iter_value_t(*tail), std::move(f))); }   template<ranges::bidirectional_range R, /*indirectly_binary_right_foldable*/< ranges::range_value_t, ranges::iterator_t> F> requires std::constructible_from<ranges::range_value_t, ranges::range_reference_t> constexpr auto operator()(R&& r, F f) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(f)); } };   inline constexpr fold_right_last_fn fold_right_last;

[edit] Complexity

Exactly ranges::distance(first, last) applications of the function object f.

[edit] Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges::fold_left left init U
ranges::fold_left_first left first element std::optional<U>
ranges::fold_right right init U
ranges::fold_right_last right last element std::optional<U>
ranges::fold_left_with_iter left init (1) ranges::in_value_result<I, U> (2) ranges::in_value_result<BR, U>,where BR is ranges::borrowed_iterator_t<R>
ranges::fold_left_first_with_iter left first element (1) ranges::in_value_result<I, std::optional<U>> (2) ranges::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R>
Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms

[edit] Example

#include #include #include #include #include #include   int main() { auto v = {1, 2, 3, 4, 5, 6, 7, 8}; std::vector<std::string> vs {"A", "B", "C", "D"};   auto r1 = std::ranges::fold_right_last(v.begin(), v.end(), std::plus<>()); // (1) std::cout << "*r1: " << *r1 << '\n';   auto r2 = std::ranges::fold_right_last(vs, std::plus<>()); // (2) std::cout << "*r2: " << *r2 << '\n';   // Use a program defined function object (lambda-expression): auto r3 = std::ranges::fold_right_last(v, [](int x, int y) { return x + y + 99; }); std::cout << "*r3: " << *r3 << '\n';   // Get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 3.f}, {'B', 3.5f}, {'C', 4.f}}; auto r4 = std::ranges::fold_right_last ( data | std::ranges::views::values, std::multiplies<>() ); std::cout << "*r4: " << *r4 << '\n'; }

Output:

*r1: 36 *r2: ABCD *r3: 729 *r4: 42

[edit] References

[edit] See also

ranges::fold_right(C++23) right-folds a range of elements(algorithm function object)[edit]
ranges::fold_left(C++23) left-folds a range of elements(algorithm function object)[edit]
ranges::fold_left_first(C++23) left-folds a range of elements using the first element as an initial value(algorithm function object)[edit]
ranges::fold_left_with_iter(C++23) left-folds a range of elements, and returns a pair (iterator, value)(algorithm function object)[edit]
ranges::fold_left_first_with_iter(C++23) left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)(algorithm function object)[edit]
accumulate sums up or folds a range of elements (function template) [edit]
reduce(C++17) similar to std::accumulate, except out of order (function template) [edit]