Rectangle - Rectangle appearance and behavior - MATLAB (original) (raw)

Rectangle Properties

Rectangle appearance and behavior

Rectangle properties control the appearance and behavior of a rectangle object. By changing property values, you can modify certain aspects of the rectangle. Use dot notation to query and set properties.

h = rectangle; w = h.LineWidth; h.LineWidth = 3;

Color and Styling

expand all

Fill color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal Color Code Appearance
"red" "r" [1 0 0] "#FF0000" Sample of the color red
"green" "g" [0 1 0] "#00FF00" Sample of the color green
"blue" "b" [0 0 1] "#0000FF" Sample of the color blue
"cyan" "c" [0 1 1] "#00FFFF" Sample of the color cyan
"magenta" "m" [1 0 1] "#FF00FF" Sample of the color magenta
"yellow" "y" [1 1 0] "#FFFF00" Sample of the color yellow
"black" "k" [0 0 0] "#000000" Sample of the color black
"white" "w" [1 1 1] "#FFFFFF" Sample of the color white
"none" Not applicable Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" Sample of RGB triplet [0 0.4470 0.7410], which appears as dark blue
[0.8500 0.3250 0.0980] "#D95319" Sample of RGB triplet [0.8500 0.3250 0.0980], which appears as dark orange
[0.9290 0.6940 0.1250] "#EDB120" Sample of RGB triplet [0.9290 0.6940 0.1250], which appears as dark yellow
[0.4940 0.1840 0.5560] "#7E2F8E" Sample of RGB triplet [0.4940 0.1840 0.5560], which appears as dark purple
[0.4660 0.6740 0.1880] "#77AC30" Sample of RGB triplet [0.4660 0.6740 0.1880], which appears as medium green
[0.3010 0.7450 0.9330] "#4DBEEE" Sample of RGB triplet [0.3010 0.7450 0.9330], which appears as light blue
[0.6350 0.0780 0.1840] "#A2142F" Sample of RGB triplet [0.6350 0.0780 0.1840], which appears as dark red

Example: "blue"

Example: [0 0 1]

Example: "#0000FF"

EdgeColor — Outline color

[0 0 0] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Outline color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name. The default value of [0 0 0] corresponds to black.

For a custom color, specify an RGB triplet or a hexadecimal color code.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal Color Code Appearance
"red" "r" [1 0 0] "#FF0000" Sample of the color red
"green" "g" [0 1 0] "#00FF00" Sample of the color green
"blue" "b" [0 0 1] "#0000FF" Sample of the color blue
"cyan" "c" [0 1 1] "#00FFFF" Sample of the color cyan
"magenta" "m" [1 0 1] "#FF00FF" Sample of the color magenta
"yellow" "y" [1 1 0] "#FFFF00" Sample of the color yellow
"black" "k" [0 0 0] "#000000" Sample of the color black
"white" "w" [1 1 1] "#FFFFFF" Sample of the color white
"none" Not applicable Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] "#0072BD" Sample of RGB triplet [0 0.4470 0.7410], which appears as dark blue
[0.8500 0.3250 0.0980] "#D95319" Sample of RGB triplet [0.8500 0.3250 0.0980], which appears as dark orange
[0.9290 0.6940 0.1250] "#EDB120" Sample of RGB triplet [0.9290 0.6940 0.1250], which appears as dark yellow
[0.4940 0.1840 0.5560] "#7E2F8E" Sample of RGB triplet [0.4940 0.1840 0.5560], which appears as dark purple
[0.4660 0.6740 0.1880] "#77AC30" Sample of RGB triplet [0.4660 0.6740 0.1880], which appears as medium green
[0.3010 0.7450 0.9330] "#4DBEEE" Sample of RGB triplet [0.3010 0.7450 0.9330], which appears as light blue
[0.6350 0.0780 0.1840] "#A2142F" Sample of RGB triplet [0.6350 0.0780 0.1840], which appears as dark red

Example: 'blue'

Example: [0 0 1]

Example: '#0000FF'

EdgeColorMode — Control how EdgeColor is set

"auto" (default) | "manual"

Control how the EdgeColor property is set, specified as one of these values:

If you change the value of the EdgeColor property manually, MATLAB changes the value of the EdgeColorMode property to"manual".

FaceAlpha — Fill color transparency

1 (default) | scalar in the range [0, 1]

Since R2024a

Fill color transparency, specified as a scalar in the range [0, 1]. A value of1 is fully opaque and 0 is completely transparent. Values between 0 and 1 are partially transparent.

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
"-" Solid line Sample of solid line
"--" Dashed line Sample of dashed line
":" Dotted line Sample of dotted line
"-." Dash-dotted line Sample of dash-dotted line, with alternating dashes and dots
"none" No line No line

LineWidth — Line width

0.5 (default) | positive value

Line width, specified as a positive value in point units.

Example: 0.75

SeriesIndex — Series index

"none" (default) | positive whole number

Since R2023b

Series index, specified as positive whole number or "none". This property is useful for reassigning the outline colors of Rectangle objects so that they match the colors of other objects.

If the SeriesIndex value is a number, MATLAB uses that number to calculate an index for assigning the outline color when you call the rectangle function. The index refers to the rows of the array stored in the ColorOrder property of the axes. Any objects in the axes that have the same SeriesIndex number will have the same color.

A SeriesIndex value of "none" corresponds to a neutral color that does not participate in the indexing scheme.

How Manual Color Assignment Overrides SeriesIndex Behavior

To manually control the outline color, set the EdgeColor property of the Rectangle object to a color value, such as a color name or RGB triplet.

When you manually set the outline color of a rectangle, MATLAB does not use automatic color selection for that object, and it allows your color to persist, regardless of the value of the SeriesIndex property. The EdgeColorMode property indicates whether the color has been set manually (by you) or automatically. A value of "manual" indicates manual selection, and a value of "auto" indicates automatic selection.

To enable automatic selection, set the SeriesIndex property to a positive whole number, and set the EdgeColorMode property to"auto".

In some cases, MATLAB sets the SeriesIndex property to 0, which also disables automatic color selection.

Curvature — Amount of horizontal and vertical curvature

[0 0] (default) | two-element vector | scalar

Amount of horizontal and vertical curvature, specified as a two element vector of the form [x y] or a scalar value. Use this property to vary the shape of the rectangle from rectangular to ellipsoidal. The horizontal curvature is the fraction of the width that is curved along the top and bottom edges. The vertical curvature is the fraction of the height that is curved along the left and right edges.

Example: [0.5 0.6]

Example: 0.75

Sharp vertical and horizontal lines, specified as 'on' or'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

Value Description Appearance
'on' Sharpen vertical and horizontal lines to eliminate an uneven appearance. Four vertical lines that are sharp
'off' Do not sharpen vertical or horizontal lines. The lines might appear uneven in thickness or color. Four vertical lines that are uneven in thickness. Some of the lines are blurry.

If the associated figure has a GraphicsSmoothing property set to 'on' and a Renderer property set to'opengl', then the figure applies a smoothing technique to plots. In some cases, this smoothing technique can cause vertical and horizontal lines to appear uneven in thickness or color. Use the AlignVertexCenters property to eliminate the uneven appearance.

Note

You must have a graphics card that supports this feature. To see if the feature is supported, call the rendererinfo function. If it is supported,rendererinfo returns value of 1 forinfo.Details.SupportsAlignVertexCenters.

Position

expand all

Position — Size and location of rectangle

[0 0 1 1] (default) | four-element vector

Size and location of the rectangle, specified as a four-element vector of the form[x y width height]. Specify the values in data units. Thex and y elements define the coordinate for the lower-left corner of the rectangle. The width and height elements define the dimensions of the rectangle.

Example: [0.5 0.5 0.3 0.4]

Interactivity

expand all

State of visibility, specified as "on" or "off", or as numeric or logical 1 (true) or0 (false). A value of "on" is equivalent to true, and "off" is equivalent tofalse. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

Context menu, specified as a ContextMenu object. Use this property to display a context menu when you right-click the object. Create the context menu using the uicontextmenu function.

Note

If the PickableParts property is set to'none' or if the HitTest property is set to 'off', then the context menu does not appear.

Selection state, specified as 'on' or 'off', or as numeric or logical 1 (true) or0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent tofalse. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

Display of selection handles when selected, specified as 'on' or'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

Clipping of the object to the axes limits, specified as 'on' or'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

The Clipping property of the axes that contains the object must be set to'on'. Otherwise, this property has no effect. For more information about the clipping behavior, see the Clipping property of the axes.

Callbacks

expand all

Mouse-click callback, specified as one of these values:

Use this property to execute code when you click the object. If you specify this property using a function handle, then MATLAB passes two arguments to the callback function when executing the callback:

For more information on how to use function handles to define callback functions, see Create Callbacks for Graphics Objects.

Note

If the PickableParts property is set to 'none' or if the HitTest property is set to 'off', then this callback does not execute.

Object creation function, specified as one of these values:

For more information about specifying a callback as a function handle, cell array, or character vector, see Create Callbacks for Graphics Objects.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

Object deletion function, specified as one of these values:

For more information about specifying a callback as a function handle, cell array, or character vector, see Create Callbacks for Graphics Objects.

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn callback before destroying the properties of the object. If you do not specify the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being deleted using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

Callback Execution Control

expand all

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent tofalse. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to consider:

MATLAB determines callback interruption behavior whenever it executes a command that processes the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor, and pause.

If the running callback does not contain one of these commands, then no interruption occurs. MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then theInterruptible property of the object that owns the running callback determines if the interruption occurs:

Note

Callback interruption and execution behave differently in these situations:

Note

When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the object returned by the gca or gcf command might change when another callback executes.

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

The BusyAction property determines callback queuing behavior only when both of these conditions are met:

Under these conditions, the BusyAction property of the object that owns the interrupting callback determines how MATLAB handles the interrupting callback. These are possible values of theBusyAction property:

Ability to capture mouse clicks, specified as one of these values:

Response to captured mouse clicks, specified as 'on' or'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

Note

The PickableParts property determines if the Rectangle object can capture mouse clicks. If it cannot, then the HitTest property has no effect.

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to'on' when the DeleteFcn callback begins execution. The BeingDeleted property remains set to'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted before querying or modifying it.

Parent/Child

expand all

Parent, specified as an Axes, Group, or Transform object.

The object has no children. You cannot set this property.

Visibility of the object handle in the Children property of the parent, specified as one of these values:

If the object is not listed in the Children property of the parent, then functions that obtain object handles by searching the object hierarchy or querying handle properties cannot return it. Examples of such functions include theget, findobj, gca, gcf, gco, newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to "on" to list all object handles regardless of theirHandleVisibility property setting.

Identifiers

expand all

Type — Type of graphics object

'rectangle'

This property is read-only.

Type of graphics object, returned as 'rectangle'. Use this property to find all objects of a given type within a plotting hierarchy, for example, searching for the type using findobj.

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj function to search for the object based on the Tag value.

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData property. For more information, see Share Data Within App Designer Apps.

Version History

Introduced before R2006a

expand all

R2024a: Control fill color transparency with FaceAlpha property

Control the fill color transparency of a rectangle by setting the FaceAlpha property to a value between 0 (completely transparent) and 1 (opaque).

R2023b: Control automatic color selection with the SeriesIndex property

Control how Rectangle objects vary in color by setting theSeriesIndex property. This property is useful when you want to match the colors of different objects in the axes.

Setting or getting UIContextMenu property is not recommended. Instead, use the ContextMenu property, which accepts the same type of input and behaves the same way as theUIContextMenu property.

There are no plans to remove the UIContextMenu property, but it is no longer listed when you call the set, get, orproperties functions on the Rectangle object.