Adjunction space (original) (raw)
En mathématiques, le recollement est la construction d'un espace topologique obtenu en « attachant un espace à un autre le long d'une application ». Plus précisément, on attache un espace Y à un espace X, le long d'une application f à valeurs dans X, continue sur un sous-espace A de Y, en définissant l'espace X ∪f Y comme le quotient de la (en) X⊔Y par la relation d'équivalence qui identifie chaque élément de A à son image par f. C'est un cas particulier de somme amalgamée.
Property | Value |
---|---|
dbo:abstract | في الرياضيات، يعتبر فضاء الإلحاق (أو فضاء الإرفاق) بنية شائعة في علم الطوبولوجيا يتم من خلالها إرفاق فضاء طوبولوجي واحد بآخر أو «لصقه» به. بشكل أكثر تحديدًا، دعنا نرمز للفضاءات الطوبولوجية بالرموز X وY على أن يشير الرمز A إلى فضاء جزئي من الفضاء الطوبولوجي Y. ولنفترض أن f : A → X تمثل خريطة مستمرة (يطلق عليها خريطة الإرفاق). ومن أشكال فضاء الإلحاق X ∪f Y ويتم تحقيق ذلك من خلال أخذ الاتحاد المنفصل للفضاء الطوبولوجي X وY ومن خلال تحديد x بـ f(x) لكل x موجودة في A. وللتعبير عن ذلك بطريقة تخطيطية، في بعض الأحيان، تتم كتابة الإلحاق بهذا الشكل . وبمجرد رؤية هذه المعادلة، سوف نعتقد بديهيًا أن Y تبدو وكأنها ملصوقة بـ X عبر الخريطة f. وباعتبارها مجموعة، تتكون X ∪f Y من اتحاد منفصل من X و(Y − A). ومع ذلك، يتم تحديد الطوبولوجيا بواسطة التركيبة الناتجة. وفي حالة ما إذا كانت A تمثل فضاءً جزئيًا مغلقًا للفضاء الطوبولوجي Y، فمن الممكن أن يتبين للمرء أن الخريطة X → X ∪f Y هي خريطة تضمين مغلقة وأن (Y − A) → X ∪f Y عبارة عن خريطة تضمين مفتوحة. (ar) In mathematics, an adjunction space (or attaching space) is a common construction in topology where one topological space is attached or "glued" onto another. Specifically, let X and Y be topological spaces, and let A be a subspace of Y. Let f : A → X be a continuous map (called the attaching map). One forms the adjunction space X ∪f Y (sometimes also written as X +f Y) by taking the disjoint union of X and Y and identifying a with f(a) for all a in A. Formally, where the equivalence relation ~ is generated by a ~ f(a) for all a in A, and the quotient is given the quotient topology. As a set, X ∪f Y consists of the disjoint union of X and (Y − A). The topology, however, is specified by the quotient construction. Intuitively, one may think of Y as being glued onto X via the map f. (en) En mathématiques, le recollement est la construction d'un espace topologique obtenu en « attachant un espace à un autre le long d'une application ». Plus précisément, on attache un espace Y à un espace X, le long d'une application f à valeurs dans X, continue sur un sous-espace A de Y, en définissant l'espace X ∪f Y comme le quotient de la (en) X⊔Y par la relation d'équivalence qui identifie chaque élément de A à son image par f. C'est un cas particulier de somme amalgamée. (fr) 위상수학에서 붙임 공간(-空間, 영어: attaching/adjunction space)은 위상 공간과 연속 함수의 범주에서의 밂이다. 이는 두 함수 가운데 하나가 일 경우 잘 작동하지만, 그렇지 않을 경우는 호모토피 이론적으로 잘 작동하지 않는다. (즉, 호모토피 범주에서의 밂을 이루지 않는다.) 이러한 경우, 호모토피 붙임 공간(영어: homotopy adjunction space)을 사용하여야 한다. 마찬가지로, 당김 공간(-空間, 영어: pullback space)은 위상 공간과 연속 함수의 범주에서의 당김이다. 이는 두 함수 가운데 하나가 올뭉치일 경우 잘 작동하지만, 그렇지 않을 경우는 호모토피 이론적으로 잘 작동하지 않는다. (즉, 호모토피 범주에서의 당김을 이루지 않는다.) 이러한 경우, 호모토피 당김 공간(영어: homotopy pullback space)을 사용하여야 한다. (ko) Suma spójna – konstrukcja topologiczna, w której jedna przestrzeń topologiczna jest przyklejana do drugiej za pomocą przekształcenia ciągłego; z tego powodu wynik nazywa się sklejeniem bądź przestrzenią sklejoną. Dokładniej, niech oraz oznaczają przestrzenie topologiczne, przy czym niech będzie podprzestrzenią w Niech będzie przekształceniem ciągłym (przekształcenie klejące). Sklejenie definiuje się jako oraz w której dowolny utożsamia się z Można to zapisać wzorem Niekiedy sklejenie zapisuje się jako Zbiór składa się z sumy rozłącznej oraz Topologia wyznaczona jest jednak poprzez konstrukcję ilorazową. Jeśli jest domkniętą podprzestrzenią to można pokazać, że przekształcenie jest zanurzeniem domkniętym, zaś jest zanurzeniem otwartym. (pl) 在数学中,黏着空间(adjunction space)是拓扑学中一个常见构造,它将一个拓扑空间贴或“黏合”到另一个。 具体地,设 X 与 Y 是一个拓扑空间以及 Y 的一个子空间A。设 f : A → X 是一个连续映射(称为贴映射,attaching map)。黏着空间 X ∪f Y 之构造如下:先取 X 与 Y 的然后对所有属于 A的 x ,将 x 与 f(x) 等化。用数学符号表示为: 有时黏着空间也写成 。在直觉上,我们认为 Y 通过映射 f 黏合到 X。 作为一个集合,X ∪f Y 由 X 与 (Y − A) 的不交并组成;但其拓扑由商构造确定。当 A 是 Y 的一个闭子集时,可以证明映射 X → X ∪f Y 时一个闭嵌入且 (Y − A) → X ∪f Y 是一个开嵌入。 (zh) |
dbo:thumbnail | wiki-commons:Special:FilePath/AdjunctionSpace-01.svg?width=300 |
dbo:wikiPageExternalLink | http://groupoids.org.uk/topgpds.html |
dbo:wikiPageID | 1240842 (xsd:integer) |
dbo:wikiPageLength | 4119 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1124208140 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Ronald_Brown_(mathematician) dbr:Inclusion_map dbr:Mathematics dbr:Connected_sum dbr:Closed_set dbr:Commutative_diagram dbr:Embedding dbr:Wedge_sum dbr:Mapping_cylinder dbr:Ball_(mathematics) dbc:Topological_spaces dbr:Topology dbr:Disjoint_union_(topology) dbc:Topology dbr:Equivalence_relation dbr:Quotient_space_(topology) dbr:Manifold dbr:CW_complex dbr:Sphere dbr:Continuous_(topology) dbr:Category_of_topological_spaces dbr:Pushout_(category_theory) dbr:Universal_property dbr:Topological_space dbr:J.H.C._Whitehead dbr:Subspace_(topology) dbr:File:AdjunctionSpace-01.svg |
dbp:title | Adjunction space (en) |
dbp:urlname | AdjunctionSpace (en) |
dbp:wikiPageUsesTemplate | dbt:Planetmath_reference |
dct:subject | dbc:Topological_spaces dbc:Topology |
rdf:type | yago:WikicatTopologicalSpaces yago:Abstraction100002137 yago:Attribute100024264 yago:MathematicalSpace108001685 yago:Set107999699 yago:Space100028651 |
rdfs:comment | En mathématiques, le recollement est la construction d'un espace topologique obtenu en « attachant un espace à un autre le long d'une application ». Plus précisément, on attache un espace Y à un espace X, le long d'une application f à valeurs dans X, continue sur un sous-espace A de Y, en définissant l'espace X ∪f Y comme le quotient de la (en) X⊔Y par la relation d'équivalence qui identifie chaque élément de A à son image par f. C'est un cas particulier de somme amalgamée. (fr) 위상수학에서 붙임 공간(-空間, 영어: attaching/adjunction space)은 위상 공간과 연속 함수의 범주에서의 밂이다. 이는 두 함수 가운데 하나가 일 경우 잘 작동하지만, 그렇지 않을 경우는 호모토피 이론적으로 잘 작동하지 않는다. (즉, 호모토피 범주에서의 밂을 이루지 않는다.) 이러한 경우, 호모토피 붙임 공간(영어: homotopy adjunction space)을 사용하여야 한다. 마찬가지로, 당김 공간(-空間, 영어: pullback space)은 위상 공간과 연속 함수의 범주에서의 당김이다. 이는 두 함수 가운데 하나가 올뭉치일 경우 잘 작동하지만, 그렇지 않을 경우는 호모토피 이론적으로 잘 작동하지 않는다. (즉, 호모토피 범주에서의 당김을 이루지 않는다.) 이러한 경우, 호모토피 당김 공간(영어: homotopy pullback space)을 사용하여야 한다. (ko) 在数学中,黏着空间(adjunction space)是拓扑学中一个常见构造,它将一个拓扑空间贴或“黏合”到另一个。 具体地,设 X 与 Y 是一个拓扑空间以及 Y 的一个子空间A。设 f : A → X 是一个连续映射(称为贴映射,attaching map)。黏着空间 X ∪f Y 之构造如下:先取 X 与 Y 的然后对所有属于 A的 x ,将 x 与 f(x) 等化。用数学符号表示为: 有时黏着空间也写成 。在直觉上,我们认为 Y 通过映射 f 黏合到 X。 作为一个集合,X ∪f Y 由 X 与 (Y − A) 的不交并组成;但其拓扑由商构造确定。当 A 是 Y 的一个闭子集时,可以证明映射 X → X ∪f Y 时一个闭嵌入且 (Y − A) → X ∪f Y 是一个开嵌入。 (zh) في الرياضيات، يعتبر فضاء الإلحاق (أو فضاء الإرفاق) بنية شائعة في علم الطوبولوجيا يتم من خلالها إرفاق فضاء طوبولوجي واحد بآخر أو «لصقه» به. بشكل أكثر تحديدًا، دعنا نرمز للفضاءات الطوبولوجية بالرموز X وY على أن يشير الرمز A إلى فضاء جزئي من الفضاء الطوبولوجي Y. ولنفترض أن f : A → X تمثل خريطة مستمرة (يطلق عليها خريطة الإرفاق). ومن أشكال فضاء الإلحاق X ∪f Y ويتم تحقيق ذلك من خلال أخذ الاتحاد المنفصل للفضاء الطوبولوجي X وY ومن خلال تحديد x بـ f(x) لكل x موجودة في A. وللتعبير عن ذلك بطريقة تخطيطية، (ar) In mathematics, an adjunction space (or attaching space) is a common construction in topology where one topological space is attached or "glued" onto another. Specifically, let X and Y be topological spaces, and let A be a subspace of Y. Let f : A → X be a continuous map (called the attaching map). One forms the adjunction space X ∪f Y (sometimes also written as X +f Y) by taking the disjoint union of X and Y and identifying a with f(a) for all a in A. Formally, Intuitively, one may think of Y as being glued onto X via the map f. (en) Suma spójna – konstrukcja topologiczna, w której jedna przestrzeń topologiczna jest przyklejana do drugiej za pomocą przekształcenia ciągłego; z tego powodu wynik nazywa się sklejeniem bądź przestrzenią sklejoną. Dokładniej, niech oraz oznaczają przestrzenie topologiczne, przy czym niech będzie podprzestrzenią w Niech będzie przekształceniem ciągłym (przekształcenie klejące). Sklejenie definiuje się jako oraz w której dowolny utożsamia się z Można to zapisać wzorem Niekiedy sklejenie zapisuje się jako (pl) |
rdfs:label | Adjunction space (en) فضاء الإلحاق (ar) Recollement (topologie) (fr) 붙임 공간 (ko) Suma spójna (pl) 黏着空间 (zh) |
owl:sameAs | yago-res:Adjunction space freebase:Adjunction space wikidata:Adjunction space dbpedia-ar:Adjunction space dbpedia-fr:Adjunction space dbpedia-ko:Adjunction space dbpedia-pl:Adjunction space dbpedia-zh:Adjunction space https://global.dbpedia.org/id/4M2dX |
prov:wasDerivedFrom | wikipedia-en:Adjunction_space?oldid=1124208140&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/AdjunctionSpace-01.svg |
foaf:isPrimaryTopicOf | wikipedia-en:Adjunction_space |
is dbo:wikiPageRedirects of | dbr:Attaching_map dbr:Attaching_space dbr:Pushout_(topology) |
is dbo:wikiPageWikiLink of | dbr:List_of_algebraic_topology_topics dbr:List_of_general_topology_topics dbr:Cone_(topology) dbr:Connected_sum dbr:Suspension_(topology) dbr:Adjoint dbr:Join_(topology) dbr:Manifold_decomposition dbr:Quotient_space_(topology) dbr:Category_of_topological_spaces dbr:Pushout_(category_theory) dbr:Attaching_map dbr:Attaching_space dbr:Pushout_(topology) |
is foaf:primaryTopic of | wikipedia-en:Adjunction_space |