Brunn–Minkowski theorem (original) (raw)

Property Value
dbo:abstract Die Brunn-Minkowski-Ungleichung bzw. der Satz von Brunn und Minkowski, benannt nach den beiden Mathematikern Hermann Brunn und Hermann Minkowski, ist ein klassischer Lehrsatz auf dem mathematischen Teilgebiet der Konvexgeometrie. Die Ungleichung setzt das Lebesgue-Maß der Minkowski-Summe zweier kompakter Teilmengen des n-dimensionalen euklidischen Raums in Relation zum Lebesgue-Maß dieser beiden Teilmengen. Sie hat zahlreiche Anwendungen und zieht insbesondere die isoperimetrische Ungleichung nach sich. (de) In mathematics, the Brunn–Minkowski theorem (or Brunn–Minkowski inequality) is an inequality relating the volumes (or more generally Lebesgue measures) of compact subsets of Euclidean space. The original version of the Brunn–Minkowski theorem (Hermann Brunn 1887; Hermann Minkowski 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to Lazar Lyusternik (1935). (en) En matemáticas, el teorema de Brunn-Minkowski (o desigualdad de Brunn-Minkowski) es una desigualdad que relaciona los volúmenes (o más generalmente medidas de Lebesgue) de subconjuntos compactos del espacio euclidiano. La versión original del teorema de Brunn-Minkowski (Hermann Brunn 1887; Hermann Minkowski 1896) se aplicó a conjuntos convexos; la generalización a conjuntos compactos no convexos que se indica aquí se debe a (1935). (es) In matematica, il teorema di Brunn-Minkowski (o disuguaglianza di Brunn-Minkowski) è una disuguaglianza che mette in relazione volumi (o, più in generale, misure di Lebesgue) di sottoinsiemi compatti di uno spazio euclideo. La versione originale del teorema di Brunn-Minkowski ( 1887; Hermann Minkowski 1896) si applicava a insiemi convessi; la generalizzazione a insiemi compatti non convessi a cui ci riferiamo qui è dovuta a (1935). (it) Inom matematiken är Brunn–Minkowski sats (eller Brunn–Minkowskis olikhet) en olikhet mellan volymerna (eller mer allmänt Lebesguemåtten) av kompakta delrum av ett Euklidiskt rum. Den ursprungliga formen av satsen ( 1887; Hermann Minkowski 1896) gällde konvexa mängder; generaliseringen till kompakta icke-konvexa mängder bevisades av (1935). (sv) Теорема Брунна — Минковского — классическая теорема выпуклой геометрии: (ru)
dbo:wikiPageExternalLink http://sbubeck.com/Bubeck15.pdf http://www.math.lsa.umich.edu/~barvinok/total710.pdf https://projecteuclid.org/euclid.rae/1212412875 https://archive.org/details/theoryofconvexbo0000bonn https://www.ams.org/journals/bull/2002-39-03/S0273-0979-02-00941-2/ https://www.youtube.com/watch%3Fv=5YI6wKw2Jdo https://www.youtube.com/watch%3Fv=UHvT1MxFuvo https://cs.uwaterloo.ca/~lapchi/cs798/L19.pdf https://cs.uwaterloo.ca/~lapchi/cs798/L20.pdf
dbo:wikiPageID 7500545 (xsd:integer)
dbo:wikiPageLength 38533 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1117660941 (xsd:integer)
dbo:wikiPageWikiLink dbr:Prékopa–Leindler_inequality dbr:Rolf_Schneider dbr:Homothetic_transformation dbr:Compact_space dbr:Convex_set dbr:Analytic_set dbr:Mathematics dbr:Modulus_and_characteristic_of_convexity dbc:Theorems_in_convex_geometry dbc:Theorems_in_measure_theory dbr:Concave_function dbr:Concentration_of_measure dbr:Milman's_reverse_Brunn–Minkowski_inequality dbc:Geometric_inequalities dbc:Calculus_of_variations dbr:Heinrich_Guggenheimer dbr:Lebesgue_measure dbr:Minkowski–Steiner_formula dbc:Sumsets dbr:Euclidean_space dbr:Isoperimetric_inequality dbr:Hermann_Brunn dbr:Hermann_Minkowski dbc:Hermann_Minkowski dbr:Lazar_Lyusternik dbr:Translation_(geometry) dbr:Mixed_volume dbr:Inequality_(mathematics) dbr:Inequality_of_arithmetic_and_geometric_means dbr:Brunn–Minkowski_theorem dbr:Young's_inequality_for_products dbr:Scaling_(geometry) dbr:Regularity_theorem_for_Lebesgue_measure dbr:Vitale's_random_Brunn–Minkowski_inequality dbr:Subset dbr:Minkowski_sum
dbp:wikiPageUsesTemplate dbt:Citation_needed dbt:Cite_book dbt:Cite_journal dbt:ISBN dbt:Reflist dbt:Collapse_bottom dbt:Collapse_top
dct:subject dbc:Theorems_in_convex_geometry dbc:Theorems_in_measure_theory dbc:Geometric_inequalities dbc:Calculus_of_variations dbc:Sumsets dbc:Hermann_Minkowski
gold:hypernym dbr:Inequality
rdf:type yago:WikicatTheoremsInConvexGeometry yago:WikicatTheoremsInMeasureTheory yago:Abstraction100002137 yago:Attribute100024264 yago:Communication100033020 yago:Difference104748836 yago:Inequality104752221 yago:Message106598915 yago:Proposition106750804 yago:Quality104723816 yago:WikicatGeometricInequalities yago:Statement106722453 yago:Theorem106752293
rdfs:comment Die Brunn-Minkowski-Ungleichung bzw. der Satz von Brunn und Minkowski, benannt nach den beiden Mathematikern Hermann Brunn und Hermann Minkowski, ist ein klassischer Lehrsatz auf dem mathematischen Teilgebiet der Konvexgeometrie. Die Ungleichung setzt das Lebesgue-Maß der Minkowski-Summe zweier kompakter Teilmengen des n-dimensionalen euklidischen Raums in Relation zum Lebesgue-Maß dieser beiden Teilmengen. Sie hat zahlreiche Anwendungen und zieht insbesondere die isoperimetrische Ungleichung nach sich. (de) In mathematics, the Brunn–Minkowski theorem (or Brunn–Minkowski inequality) is an inequality relating the volumes (or more generally Lebesgue measures) of compact subsets of Euclidean space. The original version of the Brunn–Minkowski theorem (Hermann Brunn 1887; Hermann Minkowski 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to Lazar Lyusternik (1935). (en) En matemáticas, el teorema de Brunn-Minkowski (o desigualdad de Brunn-Minkowski) es una desigualdad que relaciona los volúmenes (o más generalmente medidas de Lebesgue) de subconjuntos compactos del espacio euclidiano. La versión original del teorema de Brunn-Minkowski (Hermann Brunn 1887; Hermann Minkowski 1896) se aplicó a conjuntos convexos; la generalización a conjuntos compactos no convexos que se indica aquí se debe a (1935). (es) In matematica, il teorema di Brunn-Minkowski (o disuguaglianza di Brunn-Minkowski) è una disuguaglianza che mette in relazione volumi (o, più in generale, misure di Lebesgue) di sottoinsiemi compatti di uno spazio euclideo. La versione originale del teorema di Brunn-Minkowski ( 1887; Hermann Minkowski 1896) si applicava a insiemi convessi; la generalizzazione a insiemi compatti non convessi a cui ci riferiamo qui è dovuta a (1935). (it) Inom matematiken är Brunn–Minkowski sats (eller Brunn–Minkowskis olikhet) en olikhet mellan volymerna (eller mer allmänt Lebesguemåtten) av kompakta delrum av ett Euklidiskt rum. Den ursprungliga formen av satsen ( 1887; Hermann Minkowski 1896) gällde konvexa mängder; generaliseringen till kompakta icke-konvexa mängder bevisades av (1935). (sv) Теорема Брунна — Минковского — классическая теорема выпуклой геометрии: (ru)
rdfs:label Brunn-Minkowski-Ungleichung (de) Teorema de Brunn-Minkowski (es) Brunn–Minkowski theorem (en) Teorema di Brunn-Minkowski (it) Неравенство Брунна — Минковского (ru) Brunn–Minkowskis sats (sv)
owl:sameAs freebase:Brunn–Minkowski theorem wikidata:Brunn–Minkowski theorem dbpedia-de:Brunn–Minkowski theorem dbpedia-es:Brunn–Minkowski theorem dbpedia-it:Brunn–Minkowski theorem dbpedia-pms:Brunn–Minkowski theorem dbpedia-ro:Brunn–Minkowski theorem dbpedia-ru:Brunn–Minkowski theorem dbpedia-sv:Brunn–Minkowski theorem https://global.dbpedia.org/id/3csfD
prov:wasDerivedFrom wikipedia-en:Brunn–Minkowski_theorem?oldid=1117660941&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Brunn–Minkowski_theorem
is dbo:wikiPageRedirects of dbr:Brunn-minkowski_theorem dbr:Brunn-Minkowski_inequality dbr:Brunn-Minkowski_theorem dbr:Brunn–Minkowski_inequality dbr:Brunn-Minkowski_Inequality dbr:Brunn-minkowski_inequality dbr:Brunn_minkowski_inequality dbr:Brunn_minkowski_theorem
is dbo:wikiPageWikiLink of dbr:Branko_Grünbaum dbr:Minkowski_addition dbr:Brunn-minkowski_theorem dbr:Brunn-Minkowski_inequality dbr:Brunn-Minkowski_theorem dbr:Brunn–Minkowski_inequality dbr:Werner_Fenchel dbr:Logarithmically_concave_measure dbr:Minkowski–Steiner_formula dbr:Isoperimetric_inequality dbr:Hermann_Brunn dbr:Hermann_Minkowski dbr:Lazar_Lyusternik dbr:Blaschke_sum dbr:Brunn–Minkowski_theorem dbr:Shapley–Folkman_lemma dbr:List_of_theorems dbr:List_of_things_named_after_Hermann_Minkowski dbr:Finite_sphere_packing dbr:Fisher_information dbr:Brunn-Minkowski_Inequality dbr:Brunn-minkowski_inequality dbr:Brunn_minkowski_inequality dbr:Brunn_minkowski_theorem
is foaf:primaryTopic of wikipedia-en:Brunn–Minkowski_theorem