Double coset (original) (raw)

About DBpedia

군론에서 이중 잉여류(二重剩餘類, 영어: double coset)는 주어진 두 부분군에 의하여 결정되는 동치 관계에 대한 동치류이다.

Property Value
dbo:abstract In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let G be a group, and let H and K be subgroups. Let H act on G by left multiplication and let K act on G by right multiplication. For each x in G, the (H, K)-double coset of x is the set When H = K, this is called the H-double coset of x. Equivalently, HxK is the equivalence class of x under the equivalence relation x ~ y if and only if there exist h in H and k in K such that hxk = y. The set of all double cosets is denoted by (en) 군론에서 이중 잉여류(二重剩餘類, 영어: double coset)는 주어진 두 부분군에 의하여 결정되는 동치 관계에 대한 동치류이다. (ko) 在数学领域, 群G中的 (H,K) 双陪集在G上的等价关系下是一个等价类, 其中 H K 是 G 的子群, G上的等价关系定义如下 x ~ y, 如果存在 h 属于 H , k 属于 K 满足 hxk = y. 每个双陪集具有形式 HxK, 并且 G 分割为自身的 (H, K) 双陪集; 双陪集中的每个元素, 都是 H 在 G 中的右陪集 Hy和 K 在 G 中的左陪集 zK 的组合. 一类重要的情形是 H = K, 这时有一类内积 HyH·HyH 是双陪集的一个并集. 在某些材料中, 例如有限群, 这可以作为相关的环的基. (zh)
dbo:wikiPageID 982771 (xsd:integer)
dbo:wikiPageLength 20781 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1091892155 (xsd:integer)
dbo:wikiPageWikiLink dbr:Representation_theory dbr:Non-commutative_ring dbr:Homogeneous_space dbr:Permutation dbr:Permutation_matrix dbr:Index_of_a_subgroup dbc:Group_theory dbr:Convolution dbr:Coset dbr:Mathematics dbr:Gelfand_pair dbr:Non-abelian_group dbr:Normal_subgroup dbr:Modular_group dbr:Congruence_subgroup dbr:Equivalence_class dbr:Clifford–Klein_form dbr:Commutative_ring dbr:Commutator_subgroup dbr:Functional_analysis dbr:Subgroup dbr:2-transitive_group dbr:Topological_group dbr:Disjoint_sets dbr:Divisor dbr:Hecke_algebra_of_a_locally_compact_group dbr:Hecke_operator dbr:Equivalence_relation dbr:Number_theory dbr:Ring_(mathematics) dbr:Group_(mathematics) dbr:Group_action dbr:Abelian_group dbr:Lagrange's_theorem_(group_theory) dbr:Bijection dbr:Bilinear_map dbr:Transposition_(mathematics) dbr:Direct_product_of_groups dbr:Disjoint_union dbr:Free_abelian_group dbr:Coprime dbr:Group_ring dbr:Group_theory dbr:Induced_representation dbr:Integer dbr:Integral dbr:Bruhat_decomposition dbr:Orbit_(group_theory) dbr:Set_(mathematics) dbr:Union_(set_theory) dbr:Symmetric_group dbr:Restricted_representation dbr:Upper_triangular_matrix dbr:Properly_discontinuously dbr:Transitive_group_action dbr:Arithmetic_subgroup dbr:Cauchy–Frobenius_lemma dbr:Reductive_Lie_group dbr:Mackey's_decomposition_theorem
dbp:wikiPageUsesTemplate dbt:Math dbt:Reflist
dct:subject dbc:Group_theory
rdfs:comment 군론에서 이중 잉여류(二重剩餘類, 영어: double coset)는 주어진 두 부분군에 의하여 결정되는 동치 관계에 대한 동치류이다. (ko) 在数学领域, 群G中的 (H,K) 双陪集在G上的等价关系下是一个等价类, 其中 H K 是 G 的子群, G上的等价关系定义如下 x ~ y, 如果存在 h 属于 H , k 属于 K 满足 hxk = y. 每个双陪集具有形式 HxK, 并且 G 分割为自身的 (H, K) 双陪集; 双陪集中的每个元素, 都是 H 在 G 中的右陪集 Hy和 K 在 G 中的左陪集 zK 的组合. 一类重要的情形是 H = K, 这时有一类内积 HyH·HyH 是双陪集的一个并集. 在某些材料中, 例如有限群, 这可以作为相关的环的基. (zh) In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let G be a group, and let H and K be subgroups. Let H act on G by left multiplication and let K act on G by right multiplication. For each x in G, the (H, K)-double coset of x is the set When H = K, this is called the H-double coset of x. Equivalently, HxK is the equivalence class of x under the equivalence relation x ~ y if and only if there exist h in H and k in K such that hxk = y. (en)
rdfs:label Double coset (en) 이중 잉여류 (ko) 双陪集 (zh)
owl:sameAs freebase:Double coset wikidata:Double coset dbpedia-ko:Double coset http://ta.dbpedia.org/resource/இரட்டை_இணைக்கணம் dbpedia-zh:Double coset https://global.dbpedia.org/id/4iVhN
prov:wasDerivedFrom wikipedia-en:Double_coset?oldid=1091892155&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Double_coset
is dbo:wikiPageWikiLink of dbr:Homogeneous_space dbr:(B,_N)_pair dbr:Complexification_(Lie_group) dbr:Period_mapping dbr:Clifford–Klein_form dbr:Hecke_algebra_of_a_finite_group dbr:Hecke_operator dbr:Hanna_Neumann_conjecture dbr:Product_of_group_subsets dbr:Artin_transfer_(group_theory) dbr:Kazhdan–Lusztig_polynomial dbr:Principalization_(algebra) dbr:Differential_geometry_of_surfaces dbr:Bruhat_decomposition dbr:Shimura_variety
is foaf:primaryTopic of wikipedia-en:Double_coset