Edge-of-the-wedge theorem (original) (raw)
In mathematics, Bogoliubov's edge-of-the-wedge theorem implies that holomorphic functions on two "wedges" with an "edge" in common are analytic continuations of each other provided they both give the same continuous function on the edge. It is used in quantum field theory to construct the analytic continuation of Wightman functions. The formulation and the first proof of the theorem were presented by Nikolay Bogoliubov at the International Conference on Theoretical Physics, Seattle, USA (September, 1956) and also published in the book Problems in the Theory of Dispersion Relations. Further proofs and generalizations of the theorem were given by R. Jost and H. Lehmann (1957), F. Dyson (1958), H. Epstein (1960), and by other researchers.
Property | Value |
---|---|
dbo:abstract | In mathematics, Bogoliubov's edge-of-the-wedge theorem implies that holomorphic functions on two "wedges" with an "edge" in common are analytic continuations of each other provided they both give the same continuous function on the edge. It is used in quantum field theory to construct the analytic continuation of Wightman functions. The formulation and the first proof of the theorem were presented by Nikolay Bogoliubov at the International Conference on Theoretical Physics, Seattle, USA (September, 1956) and also published in the book Problems in the Theory of Dispersion Relations. Further proofs and generalizations of the theorem were given by R. Jost and H. Lehmann (1957), F. Dyson (1958), H. Epstein (1960), and by other researchers. (en) Теорема Боголюбова «об острие клина» утверждает, что функция нескольких комплексных переменных, голоморфная в двух клиновидных областях с общим острием, на котором она непрерывна, является голоморфной и на острие. Данная теорема используется в квантовой теории поля для построения аналитического продолжения . Первая формулировка и доказательство теоремы были приведены Н. Н. Боголюбовым на международной конференции в Сиэтле, США (сентябрь 1956 года) и также опубликованы в монографии (дополнение А, теорема 1). Впоследствии другие доказательства и обобщения теоремы были приведены Йостом и Леманом (1957), Дайсоном (1958), Эпштейном (1960) и другими математиками. Важными применениями теоремы об «острие клина» являются: доказательство дисперсионных соотношений в квантовой теории поля, аксиоматическая квантовая теория поля, теория обобщённых функций, обобщение теоремы Лиувилля. (ru) |
dbo:wikiPageExternalLink | https://books.google.com/books%3Fid=7VLMj4AvvicC&printsec=frontcover&dq=General+Principles+of+Quantum+Field+Theory https://books.google.com/books%3Fid=Ph7dtUSP63cC&printsec=frontcover |
dbo:wikiPageID | 1657665 (xsd:integer) |
dbo:wikiPageLength | 13163 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1118731483 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Princeton,_New_Jersey dbr:Princeton_University_Press dbr:Quantum_field_theory dbr:Berlin dbr:Boston dbc:Axiomatic_quantum_field_theory dbr:Holomorphic_function dbr:Res_Jost dbr:Complex_plane dbr:Analytic_continuation dbc:Several_complex_variables dbr:Mathematics dbr:Morera's_theorem dbr:Freeman_Dyson dbr:Fundamental_solution dbr:London dbr:Sobolev_space dbr:Harry_Lehmann dbr:Cayley_transform dbr:American_Mathematical_Society dbr:Fourier_series dbc:Theorems_in_mathematical_physics dbr:Upper_half-plane dbr:Heidelberg dbr:Cotangent_space dbr:Hyperfunction dbc:Theorems_in_complex_analysis dbr:Dordrecht dbr:Kluwer_Academic_Publishers dbr:New_York_City dbr:Reading,_Massachusetts dbr:Wave_front_set dbr:Springer-Verlag dbr:Hörmander dbr:Elliptic_regularity dbr:Cauchy–Riemann_operator dbr:Lower_half-plane dbr:Wightman_function dbr:Real_axis dbr:Sobolev_embedding_theorem dbr:Nikolay_Bogoliubov |
dbp:authorLink | Vasilii Sergeevich Vladimirov (en) |
dbp:first | V.S. (en) |
dbp:id | B/b016750 (en) |
dbp:last | Vladimirov (en) |
dbp:title | Bogolyubov's theorem (en) |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Reflist dbt:Short_description dbt:Eom |
dct:subject | dbc:Axiomatic_quantum_field_theory dbc:Several_complex_variables dbc:Theorems_in_mathematical_physics dbc:Theorems_in_complex_analysis |
gold:hypernym | dbr:Continuations |
rdf:type | yago:WikicatTheoremsInComplexAnalysis yago:WikicatTheoremsInMathematicalPhysics yago:Abstraction100002137 yago:Communication100033020 yago:Message106598915 yago:Proposition106750804 yago:Statement106722453 yago:Theorem106752293 |
rdfs:comment | In mathematics, Bogoliubov's edge-of-the-wedge theorem implies that holomorphic functions on two "wedges" with an "edge" in common are analytic continuations of each other provided they both give the same continuous function on the edge. It is used in quantum field theory to construct the analytic continuation of Wightman functions. The formulation and the first proof of the theorem were presented by Nikolay Bogoliubov at the International Conference on Theoretical Physics, Seattle, USA (September, 1956) and also published in the book Problems in the Theory of Dispersion Relations. Further proofs and generalizations of the theorem were given by R. Jost and H. Lehmann (1957), F. Dyson (1958), H. Epstein (1960), and by other researchers. (en) Теорема Боголюбова «об острие клина» утверждает, что функция нескольких комплексных переменных, голоморфная в двух клиновидных областях с общим острием, на котором она непрерывна, является голоморфной и на острие. Данная теорема используется в квантовой теории поля для построения аналитического продолжения . Первая формулировка и доказательство теоремы были приведены Н. Н. Боголюбовым на международной конференции в Сиэтле, США (сентябрь 1956 года) и также опубликованы в монографии (дополнение А, теорема 1). Впоследствии другие доказательства и обобщения теоремы были приведены Йостом и Леманом (1957), Дайсоном (1958), Эпштейном (1960) и другими математиками. Важными применениями теоремы об «острие клина» являются: доказательство дисперсионных соотношений в квантовой теории поля, аксиоматиче (ru) |
rdfs:label | Edge-of-the-wedge theorem (en) Теорема Боголюбова «об острие клина» (ru) |
owl:sameAs | freebase:Edge-of-the-wedge theorem yago-res:Edge-of-the-wedge theorem wikidata:Edge-of-the-wedge theorem dbpedia-ru:Edge-of-the-wedge theorem https://global.dbpedia.org/id/4846S |
prov:wasDerivedFrom | wikipedia-en:Edge-of-the-wedge_theorem?oldid=1118731483&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Edge-of-the-wedge_theorem |
is dbo:knownFor of | dbr:Reinhard_Oehme dbr:Nikolay_Bogolyubov |
is dbo:wikiPageRedirects of | dbr:The_edge_of_the_wedge_theorem dbr:Bogoliubov's_edge-of-the-wedge_theorem dbr:Bogoliubov's_theorem dbr:Bogolyubov's_edge-of-the-wedge_theorem dbr:Bogolyubov's_theorem dbr:Edge_of_the_wedge_theorem |
is dbo:wikiPageWikiLink of | dbr:List_of_complex_analysis_topics dbr:Algebraic_analysis dbr:Reinhard_Oehme dbr:Res_Jost dbr:Vasily_Vladimirov dbr:Index_of_physics_articles_(E) dbr:Function_of_several_complex_variables dbr:André_Martineau dbr:Nikolay_Bogolyubov dbr:List_of_Russian_mathematicians dbr:List_of_Russian_scientists dbr:CR_manifold dbr:The_edge_of_the_wedge_theorem dbr:List_of_theorems dbr:Sidney_Martin_Webster dbr:List_of_Russian_people dbr:Bogoliubov's_edge-of-the-wedge_theorem dbr:Bogoliubov's_theorem dbr:Bogolyubov's_edge-of-the-wedge_theorem dbr:Bogolyubov's_theorem dbr:Edge_of_the_wedge_theorem |
is dbp:knownFor of | dbr:Reinhard_Oehme |
is foaf:primaryTopic of | wikipedia-en:Edge-of-the-wedge_theorem |