Sobolev inequality (original) (raw)

Property Value
dbo:abstract In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others. They are named after Sergei Lvovich Sobolev. (en) 数学の解析学の分野には、ソボレフ空間のノルムを含むノルムに関して、ソボレフ不等式(ソボレフふとうしき、英: Sobolev inequality)の類が存在する。それらは、ある種のソボレフ空間の間の包含関係を与えるソボレフ埋蔵定理(Sobolev embedding theorem)や、わずかに強い条件の下でいくつかのソボレフ空間は別のものにコンパクトに埋め込まれることを示すレリッヒ=コンドラショフの定理を証明するために用いられる。セルゲイ・ソボレフの名にちなむ。 (ja) In matematica, in particolare nel campo dell'analisi matematica, una disuguaglianza di Sobolev rientra in una classe di disuguaglianze, il cui nome si deve a Sobolev, riguardanti le norme definite negli spazi di Sobolev. Esse sono utilizzate per dimostrare il teorema di immersione di Sobolev (sulle inclusioni tra alcuni spazi di Sobolev) ed il teorema di Rellich-Kondrakov (secondo cui, sotto condizioni leggermente più forti, alcuni spazi di Sobolev sono contenuti con compattezza in altri). (it) 在数学分析中有一类关于索博列夫空间中的范数的索博列夫不等式(英語:Sobolev inequality; 俄语:Соболев неравенство)。 这些不等式可以用于证明索博列夫嵌入定理,给出某些索博列夫空间的包含关系。而指出在稍强的条件下,一些索博列夫空间可以被到另一个空间。这类不等式得名于苏联数学家谢尔盖·利沃维奇·索博列夫。 (zh)
dbo:thumbnail wiki-commons:Special:FilePath/Sobolev_embedding_theorem.svg?width=300
dbo:wikiPageExternalLink http://bookstore.ams.org/gsm-105 http://www.maa.org/press/maa-reviews/a-first-course-in-sobolev-spaces https://archive.org/details/singularintegral0000stei
dbo:wikiPageID 4665038 (xsd:integer)
dbo:wikiPageLength 19461 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1117757836 (xsd:integer)
dbo:wikiPageWikiLink dbr:American_Journal_of_Mathematics dbr:Princeton_University_Press dbr:Rellich–Kondrachov_theorem dbr:Riesz_potential dbr:Riesz_transform dbr:Compact_space dbr:Compact_support dbr:Mathematical_analysis dbr:Mathematics dbr:Bounded_mean_oscillation dbr:Bounded_set dbr:Cone_condition dbr:Leonard_Gross dbr:Lipschitz_continuity dbr:Lp_space dbc:Sobolev_spaces dbr:Sobolev_space dbr:Logarithmic_Sobolev_inequalities dbr:American_Mathematical_Society dbr:Fourier_transform dbr:Dirichlet_form dbr:Riemannian_manifold dbc:Inequalities dbr:Charles_B._Morrey_Jr. dbc:Compactness_theorems dbr:Hölder_continuous dbr:Hölder_space dbr:Open_set dbr:Masson_(publisher) dbr:Compactly_embedded dbr:Poincaré_inequality dbr:Weak_derivative dbr:Injectivity_radius dbr:Sobolev_conjugate dbr:Manifold_with_boundary dbr:Sectional_curvature dbr:Springer-Verlag dbr:Fractional_integration dbr:Complete_manifold dbr:Completely_continuous dbr:Sergei_Lvovich_Sobolev dbr:N_sphere dbr:Springer_Science_&_Business_Media dbr:File:Sobolev_embedding_theorem.svg dbr:File:Sobolev_embedding_theorem_(Morrey_case).svg
dbp:authorlink John Forbes Nash, Jr. (en)
dbp:first John (en) S.M. (en)
dbp:id i/i050230 (en)
dbp:last Nash (en) Nikol'skii (en)
dbp:title Imbedding theorems (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:= dbt:Citation dbt:Harv dbt:Main dbt:Main_article dbt:Math dbt:Mvar dbt:NumBlk dbt:Reflist dbt:Short_description dbt:EquationRef dbt:Harvnb dbt:EquationNote dbt:Harvs dbt:Functional_analysis dbt:Zbl dbt:MR
dbp:year 1958 (xsd:integer)
dct:subject dbc:Sobolev_spaces dbc:Inequalities dbc:Compactness_theorems
rdf:type yago:WikicatCompactnessTheorems yago:WikicatSobolevSpaces yago:Abstraction100002137 yago:Attribute100024264 yago:Communication100033020 yago:Difference104748836 yago:Inequality104752221 yago:Message106598915 yago:Proposition106750804 yago:Quality104723816 yago:WikicatInequalities yago:Space100028651 yago:Statement106722453 yago:Theorem106752293
rdfs:comment In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others. They are named after Sergei Lvovich Sobolev. (en) 数学の解析学の分野には、ソボレフ空間のノルムを含むノルムに関して、ソボレフ不等式(ソボレフふとうしき、英: Sobolev inequality)の類が存在する。それらは、ある種のソボレフ空間の間の包含関係を与えるソボレフ埋蔵定理(Sobolev embedding theorem)や、わずかに強い条件の下でいくつかのソボレフ空間は別のものにコンパクトに埋め込まれることを示すレリッヒ=コンドラショフの定理を証明するために用いられる。セルゲイ・ソボレフの名にちなむ。 (ja) In matematica, in particolare nel campo dell'analisi matematica, una disuguaglianza di Sobolev rientra in una classe di disuguaglianze, il cui nome si deve a Sobolev, riguardanti le norme definite negli spazi di Sobolev. Esse sono utilizzate per dimostrare il teorema di immersione di Sobolev (sulle inclusioni tra alcuni spazi di Sobolev) ed il teorema di Rellich-Kondrakov (secondo cui, sotto condizioni leggermente più forti, alcuni spazi di Sobolev sono contenuti con compattezza in altri). (it) 在数学分析中有一类关于索博列夫空间中的范数的索博列夫不等式(英語:Sobolev inequality; 俄语:Соболев неравенство)。 这些不等式可以用于证明索博列夫嵌入定理,给出某些索博列夫空间的包含关系。而指出在稍强的条件下,一些索博列夫空间可以被到另一个空间。这类不等式得名于苏联数学家谢尔盖·利沃维奇·索博列夫。 (zh)
rdfs:label Disuguaglianza di Sobolev (it) ソボレフ不等式 (ja) Sobolev inequality (en) 索博列夫不等式 (zh)
owl:sameAs freebase:Sobolev inequality yago-res:Sobolev inequality wikidata:Sobolev inequality dbpedia-it:Sobolev inequality dbpedia-ja:Sobolev inequality dbpedia-zh:Sobolev inequality https://global.dbpedia.org/id/3S15g
prov:wasDerivedFrom wikipedia-en:Sobolev_inequality?oldid=1117757836&ns=0
foaf:depiction wiki-commons:Special:FilePath/Sobolev_embedding_theorem.svg wiki-commons:Special:FilePath/Sobolev_embedding_theorem_(Morrey_case).svg
foaf:isPrimaryTopicOf wikipedia-en:Sobolev_inequality
is dbo:knownFor of dbr:John_Forbes_Nash_Jr. dbr:Sergei_Sobolev
is dbo:wikiPageRedirects of dbr:Gagliardo-Nirenberg-Sobolev_inequality dbr:Gagliardo–Nirenberg–Sobolev_inequality dbr:Morrey's_inequality dbr:Sobolev_inequalities dbr:Hardy-Littlewood-Sobolev_inequality dbr:Hardy–Littlewood–Sobolev_inequality dbr:Kondrakov's_theorem dbr:Kondrakov_embedding_theorem dbr:Kondrakov_theorem dbr:Sobolev_embedding dbr:Sobolev_embedding_theorem dbr:Sobolev_imbedding dbr:Sobolev_imbedding_theorem
is dbo:wikiPageWikiLink of dbr:David_Allen_Hoffman dbr:Vladimir_Mazya dbr:Interpolation_inequality dbr:Joel_Spruck dbr:List_of_inequalities dbr:Pólya–Szegő_inequality dbr:Elliott_H._Lieb dbr:Gagliardo-Nirenberg-Sobolev_inequality dbr:Gagliardo–Nirenberg–Sobolev_inequality dbr:Morrey's_inequality dbr:Continuous_embedding dbr:Oscillator_representation dbr:Leon_Simon dbr:Lieb–Thirring_inequality dbr:Sobolev_inequalities dbr:Sobolev_space dbr:Compact_embedding dbr:Matematicheskii_Sbornik dbr:Lipschitz_domain dbr:Alessio_Figalli dbr:Isoperimetric_inequality dbr:Hardy-Littlewood-Sobolev_inequality dbr:Hardy–Littlewood–Sobolev_inequality dbr:John_Forbes_Nash_Jr. dbr:Coarea_formula dbr:Trace_operator dbr:Pi dbr:Pierre-Louis_Lions dbr:Spectral_theory_of_ordinary_differential_equations dbr:Cartan–Hadamard_conjecture dbr:Random_walk dbr:Sergei_Sobolev dbr:Shing-Tung_Yau dbr:Hölder_condition dbr:Malliavin_derivative dbr:Sobolev_conjugate dbr:Kondrakov's_theorem dbr:Kondrakov_embedding_theorem dbr:Kondrakov_theorem dbr:Sobolev_embedding dbr:Sobolev_embedding_theorem dbr:Sobolev_imbedding dbr:Sobolev_imbedding_theorem
is dbp:knownFor of dbr:Sergei_Sobolev
is foaf:primaryTopic of wikipedia-en:Sobolev_inequality