End (topology) (original) (raw)
In der Mathematik sind die Enden eines topologischen Raumes anschaulich gesprochen die Zusammenhangskomponenten des „Randes im Unendlichen“. Formal definiert werden sie als Äquivalenzklassen von Komplementen kompakter Mengen.
Property | Value |
---|---|
dbo:abstract | In der Mathematik sind die Enden eines topologischen Raumes anschaulich gesprochen die Zusammenhangskomponenten des „Randes im Unendlichen“. Formal definiert werden sie als Äquivalenzklassen von Komplementen kompakter Mengen. (de) In topology, a branch of mathematics, the ends of a topological space are, roughly speaking, the connected components of the "ideal boundary" of the space. That is, each end represents a topologically distinct way to move to infinity within the space. Adding a point at each end yields a compactification of the original space, known as the end compactification. The notion of an end of a topological space was introduced by Hans Freudenthal. (en) En mathématiques, un bout d'un espace topologique est de manière informelle une « composante connexe à l'infini » de cet espace. Dans les bons cas, ajouter un point pour chaque bout induit une compactification de dimension nulle de l'espace, on parle de compactification par les bouts ou Endenkompaktifiezierung en allemand, ou encore end compactification en anglais. Un bout d'un groupe topologique est une classe d'équivalence de bouts de l'espace topologique sous-jacent pour une relation d'équivalence liée à l'action du groupe. (fr) 일반위상수학에서, 끝(영어: end)은 대략 어떤 위상 공간의 "경계"의 "연결 성분"을 뜻한다. 구체적으로, 점점 더 큰 콤팩트 집합을 잘라냈을 때 남는 연결 성분들의 이다. (ko) 数学の一分野である位相空間論において、位相空間の端点(たんてん、英: end; 端)全体の成す集合は、大雑把に言えばその空間の「想像上の境界」(“ideal boundary”) の連結成分である。つまり、各端点はその空間の中で無限遠へ行くための位相的に相異なる方法を示すものになる。各端にそれぞれひとつの端点を加えるという操作は、もとの空間の端コンパクト化 (end compactification) と呼ばれるコンパクト化を導く。 (ja) Конец топологического пространства — грубо говоря, компонента связности его «идеальной границы».То есть, каждый конец представляет собой способ двигаться к бесконечности в пространстве. Добавление точки на каждом конце даёт компактификацию исходного пространства, известную как конечная компактификация. (ru) |
dbo:wikiPageID | 6862105 (xsd:integer) |
dbo:wikiPageLength | 7763 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1078940104 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Binary_tree dbr:Degree_(graph_theory) dbr:Inclusion_map dbr:Compact_space dbr:Connected_component_(topology) dbr:Mathematics dbr:Mathematische_Zeitschrift dbr:Natural_transformation dbc:Compactification_(mathematics) dbc:Properties_of_topological_spaces dbr:Line_(mathematics) dbr:Compactification_(mathematics) dbr:Empty_set dbr:Functor dbr:Hemicompact_space dbr:Path_connected dbr:Stallings_theorem_about_ends_of_groups dbr:Category_of_sets dbr:Topology dbr:Cayley_graph dbr:Graph_theory dbr:Journal_of_Combinatorial_Theory dbr:Closed_interval dbr:Proper_map dbr:Haven_(graph_theory) dbr:Inverse_limit dbr:Cover_(topology) dbc:General_topology dbr:Bijection dbr:Infinite_graph dbr:Infinity dbr:Interior_(topology) dbr:Cantor_set dbr:Category_of_topological_spaces dbr:Locally_connected dbr:Inverse_system dbr:Ray_(mathematics) dbr:Exhaustion_by_compact_sets dbr:Finitely_generated_group dbr:Real_line dbr:Topological_space dbr:Manifold_with_boundary dbr:Direct_system_(mathematics) dbr:Cofinal_sequence dbr:Compact_subset dbr:CW-complex dbr:Homotopy_classes |
dbp:authorlink | Hans Freudenthal (en) |
dbp:first | Hans (en) |
dbp:last | Freudenthal (en) |
dbp:wikiPageUsesTemplate | dbt:About dbt:Citation dbt:Cite_book dbt:Harv dbt:ISBN dbt:Main_article dbt:Pi dbt:Harvs |
dbp:year | 1931 (xsd:integer) |
dct:subject | dbc:Compactification_(mathematics) dbc:Properties_of_topological_spaces dbc:General_topology |
rdf:type | yago:Abstraction100002137 yago:Possession100032613 yago:Property113244109 yago:Relation100031921 yago:WikicatPropertiesOfTopologicalSpaces |
rdfs:comment | In der Mathematik sind die Enden eines topologischen Raumes anschaulich gesprochen die Zusammenhangskomponenten des „Randes im Unendlichen“. Formal definiert werden sie als Äquivalenzklassen von Komplementen kompakter Mengen. (de) In topology, a branch of mathematics, the ends of a topological space are, roughly speaking, the connected components of the "ideal boundary" of the space. That is, each end represents a topologically distinct way to move to infinity within the space. Adding a point at each end yields a compactification of the original space, known as the end compactification. The notion of an end of a topological space was introduced by Hans Freudenthal. (en) En mathématiques, un bout d'un espace topologique est de manière informelle une « composante connexe à l'infini » de cet espace. Dans les bons cas, ajouter un point pour chaque bout induit une compactification de dimension nulle de l'espace, on parle de compactification par les bouts ou Endenkompaktifiezierung en allemand, ou encore end compactification en anglais. Un bout d'un groupe topologique est une classe d'équivalence de bouts de l'espace topologique sous-jacent pour une relation d'équivalence liée à l'action du groupe. (fr) 일반위상수학에서, 끝(영어: end)은 대략 어떤 위상 공간의 "경계"의 "연결 성분"을 뜻한다. 구체적으로, 점점 더 큰 콤팩트 집합을 잘라냈을 때 남는 연결 성분들의 이다. (ko) 数学の一分野である位相空間論において、位相空間の端点(たんてん、英: end; 端)全体の成す集合は、大雑把に言えばその空間の「想像上の境界」(“ideal boundary”) の連結成分である。つまり、各端点はその空間の中で無限遠へ行くための位相的に相異なる方法を示すものになる。各端にそれぞれひとつの端点を加えるという操作は、もとの空間の端コンパクト化 (end compactification) と呼ばれるコンパクト化を導く。 (ja) Конец топологического пространства — грубо говоря, компонента связности его «идеальной границы».То есть, каждый конец представляет собой способ двигаться к бесконечности в пространстве. Добавление точки на каждом конце даёт компактификацию исходного пространства, известную как конечная компактификация. (ru) |
rdfs:label | Ende (Topologie) (de) End (topology) (en) Bout (topologie) (fr) 끝 (위상수학) (ko) 端点 (ja) Конец топологического пространства (ru) |
owl:sameAs | freebase:End (topology) yago-res:End (topology) wikidata:End (topology) dbpedia-de:End (topology) dbpedia-fr:End (topology) dbpedia-ja:End (topology) dbpedia-ko:End (topology) dbpedia-ru:End (topology) https://global.dbpedia.org/id/4jSFz |
prov:wasDerivedFrom | wikipedia-en:End_(topology)?oldid=1078940104&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:End_(topology) |
is dbo:wikiPageDisambiguates of | dbr:End |
is dbo:wikiPageRedirects of | dbr:End_compactification dbr:End_of_a_space dbr:Ends_of_a_space dbr:Endspace |
is dbo:wikiPageWikiLink of | dbr:Projectively_extended_real_line dbr:End_(graph_theory) dbr:John_R._Stallings dbr:Number_line dbr:Richmond_surface dbr:Saddle_tower dbr:Chen–Gackstatter_surface dbr:Geometric_group_theory dbr:Geodesic_manifold dbr:Boy's_surface dbr:Bass–Serre_theory dbr:Compactification_(mathematics) dbr:Francisco_Javier_González-Acuña dbr:Stallings_theorem_about_ends_of_groups dbr:Surface_(topology) dbr:Loch_Ness_monster_surface dbr:Hans_Freudenthal dbr:Hilbert's_arithmetic_of_ends dbr:Costa's_minimal_surface dbr:Jacob's_ladder_surface dbr:Gromov_boundary dbr:End dbr:End_compactification dbr:End_of_a_space dbr:Ends_of_a_space dbr:Endspace dbr:Tameness_theorem dbr:Riemann's_minimal_surface |
is foaf:primaryTopic of | wikipedia-en:End_(topology) |