First-countable space (original) (raw)
En Topologia, un espai topològic compleix el primer axioma de numerabilitat si cada punt de l'espai té una numerable. Si un espai compleix aquest axioma, es diu que és primer contable o primer numerable.
Property | Value |
---|---|
dbo:abstract | En Topologia, un espai topològic compleix el primer axioma de numerabilitat si cada punt de l'espai té una numerable. Si un espai compleix aquest axioma, es diu que és primer contable o primer numerable. (ca) In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space is said to be first-countable if each point has a countable neighbourhood basis (local base). That is, for each point in there exists a sequence of neighbourhoods of such that for any neighbourhood of there exists an integer with contained in Since every neighborhood of any point contains an open neighborhood of that point, the neighbourhood basis can be chosen without loss of generality to consist of open neighborhoods. (en) En Topología, se dice que un espacio topológico cumple el primer axioma de numerabilidad si cada punto del espacio tiene una base de entornos numerable. Si un espacio cumple este axioma se dice que es primero contable o primero numerable. (es) En mathématiques, un espace topologique X est à bases dénombrables de voisinages si tout point x de X possède une base de voisinages dénombrable, c'est-à-dire s'il existe une suite V0, V1, V2, … de voisinages de x telle que tout voisinage de x contienne l'un des Vn. Cette notion a été introduite en 1914 par Felix Hausdorff. (fr) In topologia, uno spazio topologico si dice primo-numerabile se soddisfa il primo assioma di numerabilità, ovvero se ogni suo punto ammette un sistema fondamentale di intorni numerabile. (it) 일반위상수학에서 제1 가산 공간(第一可算空間, 영어: first-countable space)은 모든 점이 가산 국소 기저를 갖는 위상 공간이다. 제1 가산 공간에서는 일반적으로 그물 또는 필터를 사용하여 정의되는 조건들이 점렬을 사용한 조건들과 동치가 된다. (ko) 数学の位相空間論において、第一可算空間(だいいちかさんくうかん、英: first-countable space)とは、"第一可算公理"を満たす位相空間のこと。位相空間 X が第一可算公理を満たすとは「各点 x が高々可算な近傍からなる基本近傍系(局所基)をもつこと」を指す。すなわちx の可算個の開近傍 U1, U2, …で以下の性質を満たすものが存在するということである:x の任意の近傍 V に対しある が存在し、Vは Uiを部分集合として含む。 (ja) Первая аксиома счётности ― понятие общей топологии.Топологическое пространство удовлетворяет первой аксиоме счётности, если всякой его точки обладает счётной базой. (ru) 在拓撲學上,第一可數空間(First-countable space)是指有可數的邻域基的拓撲空間,即對於,存在的開鄰域序列,使得對於任意的鄰域,存在整數使得。 (zh) Перша аксіома зліченності — властивість деяких топологічних просторів. (uk) |
dbo:wikiPageID | 904940 (xsd:integer) |
dbo:wikiPageLength | 5304 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1109911762 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Limit_of_a_function dbr:Limit_of_a_sequence dbr:Mathematics dbr:Order_topology dbr:Second-countable_space dbr:Closure_(topology) dbr:Cofinite_topology dbc:Properties_of_topological_spaces dbr:Fréchet–Urysohn_space dbr:Compactly_generated_space dbr:Topology dbr:Countable dbr:Continuity_(topology) dbr:Quotient_space_(topology) dbr:Countably_compact_space dbc:General_topology dbr:Discrete_space dbr:Axiom_of_countability dbr:Metric_space dbr:Neighbourhood_system dbr:Ordinal_space dbr:Sequence dbr:Sequential_space dbr:Without_loss_of_generality dbr:Limit_point dbr:First_uncountable_ordinal dbr:Real_line dbr:Topological_space dbr:Sequentially_compact_space dbr:Subset dbr:Fréchet-Urysohn_space dbr:Open_ball dbr:Product_space dbr:Second-countability dbr:Neighbourhood_(topology) dbr:Subspace_(topology) |
dbp:id | f/f040430 (en) |
dbp:title | first axiom of countability (en) |
dbp:wikiPageUsesTemplate | dbt:Springer dbt:Annotated_link dbt:Cite_book dbt:Reflist dbt:Short_description |
dct:subject | dbc:Properties_of_topological_spaces dbc:General_topology |
gold:hypernym | dbr:Space |
rdf:type | yago:Abstraction100002137 yago:Possession100032613 yago:Property113244109 yago:Relation100031921 yago:WikicatPropertiesOfTopologicalSpaces |
rdfs:comment | En Topologia, un espai topològic compleix el primer axioma de numerabilitat si cada punt de l'espai té una numerable. Si un espai compleix aquest axioma, es diu que és primer contable o primer numerable. (ca) In topology, a branch of mathematics, a first-countable space is a topological space satisfying the "first axiom of countability". Specifically, a space is said to be first-countable if each point has a countable neighbourhood basis (local base). That is, for each point in there exists a sequence of neighbourhoods of such that for any neighbourhood of there exists an integer with contained in Since every neighborhood of any point contains an open neighborhood of that point, the neighbourhood basis can be chosen without loss of generality to consist of open neighborhoods. (en) En Topología, se dice que un espacio topológico cumple el primer axioma de numerabilidad si cada punto del espacio tiene una base de entornos numerable. Si un espacio cumple este axioma se dice que es primero contable o primero numerable. (es) En mathématiques, un espace topologique X est à bases dénombrables de voisinages si tout point x de X possède une base de voisinages dénombrable, c'est-à-dire s'il existe une suite V0, V1, V2, … de voisinages de x telle que tout voisinage de x contienne l'un des Vn. Cette notion a été introduite en 1914 par Felix Hausdorff. (fr) In topologia, uno spazio topologico si dice primo-numerabile se soddisfa il primo assioma di numerabilità, ovvero se ogni suo punto ammette un sistema fondamentale di intorni numerabile. (it) 일반위상수학에서 제1 가산 공간(第一可算空間, 영어: first-countable space)은 모든 점이 가산 국소 기저를 갖는 위상 공간이다. 제1 가산 공간에서는 일반적으로 그물 또는 필터를 사용하여 정의되는 조건들이 점렬을 사용한 조건들과 동치가 된다. (ko) 数学の位相空間論において、第一可算空間(だいいちかさんくうかん、英: first-countable space)とは、"第一可算公理"を満たす位相空間のこと。位相空間 X が第一可算公理を満たすとは「各点 x が高々可算な近傍からなる基本近傍系(局所基)をもつこと」を指す。すなわちx の可算個の開近傍 U1, U2, …で以下の性質を満たすものが存在するということである:x の任意の近傍 V に対しある が存在し、Vは Uiを部分集合として含む。 (ja) Первая аксиома счётности ― понятие общей топологии.Топологическое пространство удовлетворяет первой аксиоме счётности, если всякой его точки обладает счётной базой. (ru) 在拓撲學上,第一可數空間(First-countable space)是指有可數的邻域基的拓撲空間,即對於,存在的開鄰域序列,使得對於任意的鄰域,存在整數使得。 (zh) Перша аксіома зліченності — властивість деяких топологічних просторів. (uk) |
rdfs:label | Primer axioma de numerabilitat (ca) Primer axioma de numerabilidad (es) First-countable space (en) Spazio primo-numerabile (it) Espace à bases dénombrables de voisinages (fr) 第一可算的空間 (ja) 제1 가산 공간 (ko) Первая аксиома счётности (ru) Перша аксіома зліченності (uk) 第一可數空間 (zh) |
owl:sameAs | freebase:First-countable space yago-res:First-countable space wikidata:First-countable space dbpedia-ca:First-countable space dbpedia-es:First-countable space dbpedia-fr:First-countable space dbpedia-gl:First-countable space dbpedia-it:First-countable space dbpedia-ja:First-countable space dbpedia-ko:First-countable space dbpedia-ru:First-countable space dbpedia-uk:First-countable space dbpedia-vi:First-countable space dbpedia-zh:First-countable space https://global.dbpedia.org/id/55Hwi |
prov:wasDerivedFrom | wikipedia-en:First-countable_space?oldid=1109911762&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:First-countable_space |
is dbo:wikiPageRedirects of | dbr:First_axiom_of_countability dbr:First_countability dbr:First-countable dbr:First_countable dbr:First_Axiom_of_Countability dbr:First_countable_space dbr:First–countable_space |
is dbo:wikiPageWikiLink of | dbr:List_of_general_topology_topics dbr:Modes_of_convergence dbr:Metrizable_space dbr:Particular_point_topology dbr:Lexicographic_order_topology_on_the_unit_square dbr:Continuous_function dbr:General_topology dbr:Lower_limit_topology dbr:Order_topology dbr:Topological_property dbr:Second-countable_space dbr:Closed_graph_property dbr:Closed_graph_theorem_(functional_analysis) dbr:Closure_(topology) dbr:Alexander_Arhangelskii dbr:Fréchet–Urysohn_space dbr:Closed_set dbr:Compactly_generated_space dbr:Helly_space dbr:Hemicompact_space dbr:Space_(mathematics) dbr:Well-order dbr:Local_homeomorphism dbr:Subsequential_limit dbr:Γ-convergence dbr:Filter_(mathematics) dbr:Filters_in_topology dbr:First_axiom_of_countability dbr:First_countability dbr:Cardinal_function dbr:Glossary_of_topology dbr:Proper_map dbr:Countably_compact_space dbr:Counterexamples_in_Topology dbr:First-countable dbr:First_countable dbr:Accumulation_point dbr:Trivial_topology dbr:Discrete_space dbr:Axiom_of_countability dbr:Final_topology dbr:Fine_topology_(potential_theory) dbr:Metric_space dbr:Net_(mathematics) dbr:Sequence_covering_map dbr:Sequential_space dbr:Long_line_(topology) dbr:Topological_manifold dbr:Series_(mathematics) dbr:Extremally_disconnected_space dbr:First_uncountable_ordinal dbr:Topological_divisor_of_zero dbr:Set-theoretic_topology dbr:Wijsman_convergence dbr:First_Axiom_of_Countability dbr:First_countable_space dbr:First–countable_space |
is foaf:primaryTopic of | wikipedia-en:First-countable_space |