Low-discrepancy sequence (original) (raw)
저불일치 수열(低不一致數列, low-discrepancy sequence)은 수열의 N번째항까지의 불일치측도(discrepancy)가 작은 수열이다. 이러한 수열을 준난수열(quasirandom sequence)라고도 한다. 준난수를 일반적인 난수나 의사 난수 대신 사용하면 수치적분 성능이 개선된다.
Property | Value |
---|---|
dbo:abstract | En el ámbito de las matemáticas, se denomina sucesión de baja discrepancia a una sucesión con la propiedad de que para todos los valores de N, su subsucesión x 1, ..., x N tiene una baja. En términos generales, la discrepancia de una sucesión es baja si la proporción de puntos en la sucesión que se encuentran en un conjunto arbitrario B es casi proporcional a la medida de B , como sucedería en promedio (pero no para muestras particulares) en el caso de un distribución uniforme. Las definiciones específicas de discrepancia difieren en cuanto a la elección de B y cómo se calcula (por lo general normalizada) la discrepancia para cada B y como se combina la discrepancia (normalmente tomando el peor valor). Las sucesiones de baja discrepancia también se llaman sucesiones cuasi-aleatorias o sub-aleatorias, debido a ser usadas comúnmente como reemplazo de números aleatorios uniformemente distribuidos.El calificador "cuasi" se utiliza para indicar más claramente que los valores de una sucesión de baja discrepancia no son aleatorios ni pseudoaleatorios, pero tales sucesiones comparten algunas de las propiedades de las variables aleatorias y en ciertas aplicaciones tales como el su baja discrepancia es una ventaja importante. (es) In mathematics, a low-discrepancy sequence is a sequence with the property that for all values of N, its subsequence x1, ..., xN has a low discrepancy. Roughly speaking, the discrepancy of a sequence is low if the proportion of points in the sequence falling into an arbitrary set B is close to proportional to the measure of B, as would happen on average (but not for particular samples) in the case of an equidistributed sequence. Specific definitions of discrepancy differ regarding the choice of B (hyperspheres, hypercubes, etc.) and how the discrepancy for every B is computed (usually normalized) and combined (usually by taking the worst value). Low-discrepancy sequences are also called quasirandom sequences, due to their common use as a replacement of uniformly distributed random numbers.The "quasi" modifier is used to denote more clearly that the values of a low-discrepancy sequence are neither random nor pseudorandom, but such sequences share some properties of random variables and in certain applications such as the quasi-Monte Carlo method their lower discrepancy is an important advantage. (en) En mathématiques, une suite à discrépance faible est une suite ayant la propriété que pour tout entier N, la sous-suite x1, ..., xN a une basse. Dans les faits, la discrépance d'une suite est faible si la proportion des points de la suite sur un ensemble B est proche de la valeur de la mesure de B, ce qui est le cas en moyenne (mais pas pour des échantillons particuliers) pour une suite équidistribuée. Plusieurs définitions de la discrépance existent selon la forme de B (hypersphères, hypercubes, etc.) et la méthode de calcul de la discrépance sur B. Les suites à discrépance faible sont appelées quasi aléatoires ou sous-aléatoires, en raison de leur utilisation pour remplacer les tirages de la loi uniforme continue.Le préfixe « quasi » précise ainsi que les valeurs d'une suite à discrépance faible ne sont pas aléatoires ou pseudo-aléatoires, mais ont des propriétés proches de tels tirages, permettant ainsi leur usage intéressant dans la méthode de quasi-Monte-Carlo. (fr) 저불일치 수열(低不一致數列, low-discrepancy sequence)은 수열의 N번째항까지의 불일치측도(discrepancy)가 작은 수열이다. 이러한 수열을 준난수열(quasirandom sequence)라고도 한다. 준난수를 일반적인 난수나 의사 난수 대신 사용하면 수치적분 성능이 개선된다. (ko) |
dbo:thumbnail | wiki-commons:Special:FilePath/Subrandom_Kurtosis.gif?width=300 |
dbo:wikiPageExternalLink | http://calgo.acm.org/ http://finmathblog.blogspot.com/2013/09/quasi-random-sampling-subject-to-linear.html http://kirillsprograms.com/top_3Sobol.php https://www.gnu.org/software/gsl/doc/html/qrng.html |
dbo:wikiPageID | 478601 (xsd:integer) |
dbo:wikiPageLength | 25436 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1121367580 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Quicksort dbr:Numerical_Recipes dbr:Bounded_variation dbr:Derivative dbc:Sequences_and_series dbr:Paul_Erdős dbr:Kurtosis dbr:Standard_deviation dbr:Thue–Siegel–Roth_theorem dbc:Random_number_generation dbr:Mathematics dbr:Maxima_and_minima dbr:Mean dbr:Measure_(mathematics) dbr:Median dbr:G._H._Hardy dbr:GNU_Scientific_Library dbr:Golden_ratio dbr:Gray_code dbr:Mode_(statistics) dbr:Modular_arithmetic dbr:Moment_(mathematics) dbr:Monte_Carlo_method dbr:Equidistributed_sequence dbr:Pseudorandom dbr:Linear_congruential_generator dbr:Local_minima dbr:Silver_ratio dbr:Halton_sequence dbr:Primes dbr:Van_der_Corput_sequence dbr:Cauchy–Schwarz_inequality dbr:Turán dbr:Jurjen_Ferdinand_Koksma dbr:Lebesgue_measure dbc:Numerical_analysis dbr:Cumulative_distribution_function dbr:Edmund_Hlawka dbr:Exclusive_or dbr:Fortran dbr:Numerical_integration dbr:Discrepancy_theory dbr:Harald_Niederreiter dbr:Probability_density_function dbr:Quasi-Monte_Carlo_method dbr:Hypercube dbr:ACM_Transactions_on_Mathematical_Software dbr:Characteristic_function_(probability_theory) dbr:John_Hammersley dbr:Supersampling dbr:Discrepancy_of_a_sequence dbr:Dover_Publications dbc:Diophantine_approximation dbr:Approximation_exponent dbr:Coprime dbr:Integral dbr:Klaus_Roth dbr:Michael_Lacey_(mathematician) dbr:Sequence dbr:Wolfgang_M._Schmidt dbr:Markov_chain_Monte_Carlo dbr:Skewness dbr:Sobol_sequence dbr:Netlib dbr:Latin_squares dbc:Low-discrepancy_sequences dbr:Confidence_intervals dbr:Systematic_sampling dbr:Sparse_grid dbr:Random_sequence dbr:Hyperspheres dbr:List_of_pseudorandom_number_generators dbr:Newton–Raphson_iteration dbr:File:Hammersley_set_2D.svg dbr:W._M._Schmidt dbr:File:Halton_sequence_2D.svg dbr:File:Low_discrepancy_100.png dbr:File:Low_discrepancy_1000.png dbr:File:Low_discrepancy_10000.png dbr:File:Random_10000.png dbr:File:Subrandom_2D.gif dbr:File:Subrandom_Kurtosis.gif |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Cite_book dbt:Clear dbt:Main_article dbt:Radic dbt:Reflist |
dct:subject | dbc:Sequences_and_series dbc:Random_number_generation dbc:Numerical_analysis dbc:Diophantine_approximation dbc:Low-discrepancy_sequences |
gold:hypernym | dbr:Sequence |
rdf:type | yago:WikicatSequencesAndSeries yago:Abstraction100002137 yago:Arrangement107938773 yago:Group100031264 yago:Ordering108456993 yago:Sequence108459252 yago:Series108457976 |
rdfs:comment | 저불일치 수열(低不一致數列, low-discrepancy sequence)은 수열의 N번째항까지의 불일치측도(discrepancy)가 작은 수열이다. 이러한 수열을 준난수열(quasirandom sequence)라고도 한다. 준난수를 일반적인 난수나 의사 난수 대신 사용하면 수치적분 성능이 개선된다. (ko) En el ámbito de las matemáticas, se denomina sucesión de baja discrepancia a una sucesión con la propiedad de que para todos los valores de N, su subsucesión x 1, ..., x N tiene una baja. En términos generales, la discrepancia de una sucesión es baja si la proporción de puntos en la sucesión que se encuentran en un conjunto arbitrario B es casi proporcional a la medida de B , como sucedería en promedio (pero no para muestras particulares) en el caso de un distribución uniforme. Las definiciones específicas de discrepancia difieren en cuanto a la elección de B y cómo se calcula (por lo general normalizada) la discrepancia para cada B y como se combina la discrepancia (normalmente tomando el peor valor). (es) In mathematics, a low-discrepancy sequence is a sequence with the property that for all values of N, its subsequence x1, ..., xN has a low discrepancy. Roughly speaking, the discrepancy of a sequence is low if the proportion of points in the sequence falling into an arbitrary set B is close to proportional to the measure of B, as would happen on average (but not for particular samples) in the case of an equidistributed sequence. Specific definitions of discrepancy differ regarding the choice of B (hyperspheres, hypercubes, etc.) and how the discrepancy for every B is computed (usually normalized) and combined (usually by taking the worst value). (en) En mathématiques, une suite à discrépance faible est une suite ayant la propriété que pour tout entier N, la sous-suite x1, ..., xN a une basse. Dans les faits, la discrépance d'une suite est faible si la proportion des points de la suite sur un ensemble B est proche de la valeur de la mesure de B, ce qui est le cas en moyenne (mais pas pour des échantillons particuliers) pour une suite équidistribuée. Plusieurs définitions de la discrépance existent selon la forme de B (hypersphères, hypercubes, etc.) et la méthode de calcul de la discrépance sur B. (fr) |
rdfs:label | Sucesión de baja discrepancia (es) Suite à discrépance faible (fr) Low-discrepancy sequence (en) 저불일치 수열 (ko) |
owl:sameAs | freebase:Low-discrepancy sequence yago-res:Low-discrepancy sequence wikidata:Low-discrepancy sequence dbpedia-es:Low-discrepancy sequence dbpedia-fr:Low-discrepancy sequence dbpedia-ko:Low-discrepancy sequence https://global.dbpedia.org/id/4qoVm |
prov:wasDerivedFrom | wikipedia-en:Low-discrepancy_sequence?oldid=1121367580&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Halton_sequence_2D.svg wiki-commons:Special:FilePath/Hammersley_set_2D.svg wiki-commons:Special:FilePath/Low_discrepancy_100.png wiki-commons:Special:FilePath/Low_discrepancy_1000.png wiki-commons:Special:FilePath/Low_discrepancy_10000.png wiki-commons:Special:FilePath/Random_10000.png wiki-commons:Special:FilePath/Subrandom_2D.gif wiki-commons:Special:FilePath/Subrandom_Kurtosis.gif |
foaf:isPrimaryTopicOf | wikipedia-en:Low-discrepancy_sequence |
is dbo:wikiPageRedirects of | dbr:Low-discrepancy_sequences dbr:Hammersley_set dbr:Quasi-random dbr:Quasi-random_number dbr:Quasi-random_sequence dbr:Quasi-random_sequences dbr:Quasi-randomness dbr:Quasi_random_number dbr:Quasi_random_sequence dbr:Quasirandom dbr:Quasirandom_Number dbr:Quasirandom_Sequence dbr:Quasirandom_number dbr:Quasirandom_numbers dbr:Quasirandom_sequence dbr:Quasirandomness dbr:Low_Discrepancy_Constructions dbr:Low_discrepancy_sequence dbr:Low_discrepancy_sequences dbr:Construction_of_low-discrepancy_sequences dbr:Constructions_of_low-discrepancy_sequences dbr:Constructions_of_low_discrepancy_sequences dbr:Illustration_of_a_low-discrepancy_sequence dbr:Koksma-Hlawka_inequality dbr:Koksma–Hlawka_inequality dbr:Sub-random dbr:Subrandom dbr:Subrandom_numbers |
is dbo:wikiPageWikiLink of | dbr:Monte_Carlo_methods_in_finance dbr:Applications_of_randomness dbr:Information-based_complexity dbr:List_of_number_theory_topics dbr:List_of_numerical_analysis_topics dbr:QRNG dbr:Low-discrepancy_sequences dbr:Monte_Carlo_method dbr:Equidistributed_sequence dbr:Equidistribution_theorem dbr:Erdős–Turán_inequality dbr:Stanisław_Krystyn_Zaremba dbr:Halton_sequence dbr:Van_der_Corput_sequence dbr:Hash_function dbr:Jurjen_Ferdinand_Koksma dbr:Outline_of_finance dbr:Diophantine_approximation dbr:Discrepancy_function dbr:Frances_Kuo dbr:Tatyana_Pavlovna_Ehrenfest dbr:Pseudorandom_number_generator dbr:Quasi-Monte_Carlo_method dbr:Randomness dbr:Hash_table dbr:John_Hammersley dbr:Bit-reversal_permutation dbr:Random_assignment dbr:Markov_chain_Monte_Carlo dbr:Sobol_sequence dbr:Variance-based_sensitivity_analysis dbr:Systematic_sampling dbr:Universal_hashing dbr:Random_number_generation dbr:Hammersley_set dbr:Quasi-random dbr:Quasi-random_number dbr:Quasi-random_sequence dbr:Quasi-random_sequences dbr:Quasi-randomness dbr:Quasi_random_number dbr:Quasi_random_sequence dbr:Quasirandom dbr:Quasirandom_Number dbr:Quasirandom_Sequence dbr:Quasirandom_number dbr:Quasirandom_numbers dbr:Quasirandom_sequence dbr:Quasirandomness dbr:Low_Discrepancy_Constructions dbr:Low_discrepancy_sequence dbr:Low_discrepancy_sequences dbr:Construction_of_low-discrepancy_sequences dbr:Constructions_of_low-discrepancy_sequences dbr:Constructions_of_low_discrepancy_sequences dbr:Illustration_of_a_low-discrepancy_sequence dbr:Koksma-Hlawka_inequality dbr:Koksma–Hlawka_inequality dbr:Sub-random dbr:Subrandom dbr:Subrandom_numbers |
is foaf:primaryTopic of | wikipedia-en:Low-discrepancy_sequence |