Nondestructive testing (original) (raw)
الاختبار غير الإتلافي أو الـ«لا إتلافي» أو اختبار غير مدمر أو اختبار غير تدميري (غالباً ما تكون بصيغة الجمع أي اختبارات أو فحوصات) (بالإنجليزية: Nondestructive testing) اختصارًا NDT هو نوع من أنواع الاختبارات في تحليل أسباب انهيار القطع أو من أجل منع حدوث انهيار القطع في المستقبل وذلك بإجراء الاختبار على القطعة دون إتلافها أو إلحاق أضرار بها.
Property | Value |
---|---|
dbo:abstract | الاختبار غير الإتلافي أو الـ«لا إتلافي» أو اختبار غير مدمر أو اختبار غير تدميري (غالباً ما تكون بصيغة الجمع أي اختبارات أو فحوصات) (بالإنجليزية: Nondestructive testing) اختصارًا NDT هو نوع من أنواع الاختبارات في تحليل أسباب انهيار القطع أو من أجل منع حدوث انهيار القطع في المستقبل وذلك بإجراء الاختبار على القطعة دون إتلافها أو إلحاق أضرار بها. (ar) Nedestruktivní testování (NDT), nebo také Defektoskopie zahrnuje soubor metod, které jsou na základě měřitelných, nebo sledovatelných fyzikálních jevů schopny odhalit vady ve výrobku bez jeho porušení nebo poškození. Výrobek není při defektoskopické kontrole poškozen, a pokud splňuje požadavky na jakost, je možné jej ihned použít - defektoskopická zkouška probíhá nedestruktivně. Indikace vady při fluorescenční zkoušce magnetickou práškovou metodou. Úlohou a cílem defektoskopie (NDT) je prokázat a potvrdit, že zkoušený výrobek nemá nepřípustné vady. Pokud se během NDT prokáže přítomnost nepřípustných vad/defektů, potom výrobek není možné použít k danému účelu. Musí být opraven nebo vyzmetkován. Nepřípustnost vad se stanovuje empiricky - na základě zkušeností generací výrobců a provozovatelů. Dalším možným způsobem je využití výpočtů, modelování a ověřovacích zkoušek. To vše je koncentrováno ve výrobkových, resp. provozovacích normách a standardech. Proto je pro defektoskopického pracovníka nezbytně nutné znát příslušné normy a standardy, které určují přípustnost vad a způsoby provádění NDT zkoušek. Běžné NDT medody jsou: , , magnetická prášková metoda, , , metoda vířivých proudů, , infračervená defektoskopie. (cs) Saiakuntza ez-suntsitzaileak zientzian eta industrian erabiltzen diren saiakuntza teknika multzo bat da; teknika hauen bidez material, pieza edo sistema baten egoera aztertu eta ebaluatu daiteke kalterik eragin gabe, hau da, aztertu nahi den materialaren ezaugarri kimiko, fisiko, mekaniko eta dimentsionalak aldatu gabe. Saiakuntza ez-suntsitzaile metodo erabilienak ultrasoinuak, partikula magnetikoak, , erradiazioak (elektromagnetikoa nahiz partikula azpiatomikoak) eta inspekzio bisuala dira. Saiakuntza ez-suntsitzaileak oso erabiliak dira ingeniaritza mekanikoan (batez ere autogintza industrian eta industria aeronautikoan), ingeniaritza elektrikoan, eraikuntzan, herri-lan ingeniaritzan, ingeniaritza nuklearrean, , medikuntzan eta artelanen kontserbazio eta zaharberritzean. (eu) Se denomina ensayo no destructivo (END; en inglés, NDT, de nondestructive testing) a cualquier tipo de prueba practicada a un material que no altere de forma permanente sus propiedades físicas, químicas, o . Los ensayos no destructivos implican un daño imperceptible o nulo. Los diferentes métodos se basan en la aplicación de fenómenos físicos tales como ondas electromagnéticas, acústicas, elásticas, emisión de partículas subatómicas, capilaridad, absorción y cualquier tipo de prueba que no implique un daño considerable a la muestra examinada.[cita requerida] Se identifican comúnmente con las siglas PND o NDT y se consideran sinónimos de ensayos no destructivos, , Pruebas no destructivas y .[cita requerida] En general, los ensayos no destructivos proveen datos menos exactos acerca del estado de la variable a medir que los . Sin embargo, suelen ser más baratos para el propietario de la pieza a examinar, ya que no implican la destrucción de la misma. En ocasiones, los ensayos no destructivos buscan únicamente verificar la homogeneidad y continuidad del material analizado, por lo que se complementan con los datos provenientes de los .[cita requerida] La amplia aplicación de los métodos de ensayos no destructivos en materiales se encuentran resumidas en los tres grupos siguientes: * Defectología. Permite la detección de , evaluación de la corrosión y por ; determinación de tensiones; detección de fugas. * Caracterización. Evaluación de las características químicas, estructurales, mecánicas y tecnológicas de los materiales; propiedades físicas (elásticas, eléctricas y electromagnéticas); transferencias de calor y trazado de isotermas.[cita requerida] * Metrología. Control de espesores; medidas de espesores por un solo lado, medidas de espesores de recubrimiento; niveles de llenado.Véase también: Control de calidad (es) Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage.The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology.Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. The six most frequently used NDT methods are eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing. NDT is commonly used in forensic engineering, mechanical engineering, petroleum engineering, electrical engineering, civil engineering, systems engineering, aeronautical engineering, medicine, and art. Innovations in the field of nondestructive testing have had a profound impact on medical imaging, including on echocardiography, medical ultrasonography, and digital radiography. NDT methods rely upon use of electromagnetic radiation, sound and other signal conversions to examine a wide variety of articles (metallic and non-metallic, food-product, artifacts and antiquities, infrastructure) for integrity, composition, or condition with no alteration of the article undergoing examination. Visual inspection (VT), the most commonly applied NDT method, is quite often enhanced by the use of magnification, borescopes, cameras, or other optical arrangements for direct or remote viewing. The internal structure of a sample can be examined for a volumetric inspection with penetrating radiation (RT), such as X-rays, neutrons or gamma radiation. Sound waves are utilized in the case of ultrasonic testing (UT), another volumetric NDT method – the mechanical signal (sound) being reflected by conditions in the and evaluated for amplitude and distance from the search unit (transducer). Another commonly used NDT method used on ferrous materials involves the application of fine iron particles (either suspended in liquid or dry powder – fluorescent or colored) that are applied to a part while it is magnetized, either continually or residually. The particles will be attracted to leakage fields of magnetism on or in the test object, and form indications (particle collection) on the object's surface, which are evaluated visually. Contrast and probability of detection for a visual examination by the unaided eye is often enhanced by using liquids to penetrate the test article surface, allowing for visualization of flaws or other surface conditions. This method (liquid penetrant testing) (PT) involves using dyes, fluorescent or colored (typically red), suspended in fluids and is used for non-magnetic materials, usually metals. Analyzing and documenting a nondestructive failure mode can also be accomplished using a high-speed camera recording continuously (movie-loop) until the failure is detected. Detecting the failure can be accomplished using a sound detector or stress gauge which produces a signal to trigger the high-speed camera. These high-speed cameras have advanced recording modes to capture some non-destructive failures. After the failure the high-speed camera will stop recording. The captured images can be played back in slow motion showing precisely what happened before, during and after the nondestructive event, image by image. (en) Pengujian non destruktif (bahasa Inggris: Nondestructive testing) adalah salah satu dari kelompok luas teknik analisis yang digunakan dalam industri sains dan teknologi untuk mengevaluasi sifat-sifat material, komponen, atau sistem tanpa menyebabkan kerusakan. Istilah pemeriksaan tak rusak (NDE), inspeksi tak rusak (NDI), dan evaluasi tak rusak (NDE) juga biasa digunakan untuk menggambarkan teknologi ini. Karena NDT tidak secara permanen mengubah artikel yang sedang diperiksa, ini adalah teknik yang sangat berharga yang dapat menghemat uang dan waktu dalam evaluasi produk, pemecahan masalah, dan penelitian. Enam metode NDT yang paling sering digunakan adalah , , penetran cair, radiografi, ultrasonik, dan visual. Menganalisis dan mendokumentasikan mode kegagalan tak rusak juga dapat dilakukan dengan menggunakan perekaman kamera berkecepatan tinggi secara terus menerus (movie-loop) hingga kegagalan terdeteksi. Mendeteksi kegagalan dapat dilakukan dengan menggunakan detektor suara atau pengukur tegangan yang menghasilkan sinyal untuk memicu kamera berkecepatan tinggi. (in) Le contrôle non destructif (CND) est un ensemble de méthodes qui permettent de caractériser l'état d'intégrité de structures ou de matériaux, sans les dégrader, soit au cours de la production, soit en cours d'utilisation, soit dans le cadre de maintenances. On parle aussi d'essais non destructifs (END) ou d'examens non destructifs. (fr) 非破壊検査(ひはかいけんさ、NDI、英: non destructive inspection、NDT、英: non destructive testing)とは、機械部品や構造物の有害なきず(デント、ニック、スクラッチ、クラック、ボイドなど)を、対象を破壊することなく検出する技術である。対象内へ放射線や超音波などを入射して、を検出したり、表面近くへ電流や磁束を流してを検出する方法に大別される。配管内部の腐食などの検査も非破壊検査に含まれる。 (ja) 비파괴검사(非破壞檢査, 영어: nondestructive testing 또는 evaluation, examination, inspection, NDT 또는 NDE, NDI)는 제조 분야에서 공작물, 부재, 구조물 등을 파괴하지 않고 완전성이나 표면상태, 균열 등을 검사하는 방법이다. 대표적으로 액체침투법, 자기탐상법, 초음파검사법, 음향방사법, 방사선투과법, 와전류탐상법, 열탐상법, 홀로그래피기술등이 있으며 재료의 표면 결함이나 내부 결함을 관찰하는 데 쓰인다. 재료를 파괴하지 않고도 검사할 수 있다는 특성때문에 시간과 돈을 절약하면서 항공기 부품과 같은 고가의 부품을 검사 및 평가(product evaluation)하고 문제를 해결(troubleshooting)하고 연구(research)하는데 주로 사용된다. (ko) Il controllo non distruttivo (CND) si riferisce a un complesso di esami, prove e rilievi, finalizzati alla ricerca e identificazione di difetti di una struttura o materiale, condotti impiegando metodi che non alterano il materiale e non richiedono la distruzione o l'asportazione di campioni dalla struttura in esame. Come abbreviazione si usa spesso la sigla NDT, derivata dall'espressione inglese Non Destructive Testing, o la sigla PND, derivata dall'espressione “prove non distruttive”. (it) Niet-destructief onderzoek (NDO) behelst in de materiaalkunde een aantal onderzoekstechnieken, die bedoeld zijn om de onderzoeker een indruk te geven van de kwaliteit en materiaaleigenschappen van een object of substraat, zonder dit te beschadigen. Een voorbeeld is het nemen van een röntgenfoto. Bij destructief onderzoek (DO) gaat het object verloren, bijvoorbeeld doordat men uitprobeert bij welke uitgeoefende kracht het bestookte object bezwijkt. In tegenstelling tot destructief onderzoek, waarbij beschadigingen van het object plaatsvinden, kan NDO op het gehele object plaatsvinden. Sinds het begin van de 20e eeuw zijn er diverse onderzoekstechnieken ontwikkeld, onder andere door de ontwikkeling van de micro-elektronica. (nl) Defektoskopia – dział badań nieniszczących zmierzających do wykrycia nieciągłości materiału. Wykrywane są wady materiału takie jak: wtrącenia, ubytki korozyjne, pustki, pęknięcia, odwarstwienia, łuski, szczeliny, braki przetopu itp. (pl) Неразруша́ющий контро́ль (НК) — контроль надёжности основных рабочих свойств и параметров объекта или отдельных его элементов/узлов, не требующий выведения объекта из работы либо его демонтажа. Также существует понятие разрушающего контроля (например, краш-тесты автомобилей). (ru) Denomina-se ensaio não destrutivo (END ou NDT em inglês nondestructive testing) a qualquer tipo de ensaio praticado a um material que não altere de forma e permanente suas propriedades físicas, químicas, mecânicas ou dimensionais. Os ensaios não destrutivos implicam um dano imperceptível ou nulo. Ensaios não destrutivos representam um conjunto amplo de técnicas de análise utilizadas na ciência e na indústria para avaliar as propriedades de um material, componente ou sistema, sem causar danos, baseando-se na aplicação de fenômenos físicos tais como ondas eletromagnéticas, acústicas, elasticidade, emissão de partículas subatômicas, capilaridade, absorção e qualquer tipo de teste que não implique um dano considerável à amostra examinada. Os ensaios não destrutivos são técnicas altamente valiosas, uma vez que permitem o controle das propriedades dos materiais, com economia de tempo e dinheiro, e permitem que o material testado volte intacto para o local de trabalho após a inspeção. Métodos comuns de END incluem ultrassom, partículas magnéticas, líquido penetrante, radiografia e ensaios por correntes de Foucault (correntes parasitas). END são uma ferramenta comumente usada em engenharia forense, engenharia mecânica, engenharia elétrica, engenharia civil, sistemas de engenharia, engenharia aeronáutica, medicina e arte. (pt) Неруйнівний контроль (скорочено НК) — контроль властивостей і параметрів об'єкта, не руйнуючи його та при якому не повинна бути порушена придатність об'єкта до використання та експлуатації. (uk) 无损检测(Nondestructive testing,NDT)又称非破坏检验,是在不影响检测对象未来使用功能或现在的运行状态前提下,采用射线、超声、红外、电磁、太赫兹无损检测 等原理技术仪器对材料、零件、设备进行缺陷、化学、物理参数的检测技术。常见的有超声波检测焊缝中的裂纹等方法。中国机械工程学会无损检测学会是中国无损检测学术组织,TC56是其标准化机构。 (zh) |
dbo:thumbnail | wiki-commons:Special:FilePath/Xray_vault.jpg?width=300 |
dbo:wikiPageExternalLink | https://www.ukas.com/ https://www.efndt.org/ https://www.icndt.org/ https://www.precoinc.com/industrial/about/certifications-standards https://www.nist.gov/about-nist https://www.aia-aerospace.org/standards/ https://www.bindt.org/NANDTB/ https://blog.ansi.org/2019/07/ansi-iso-iec-17024-accreditation-personnel/ https://global.ihs.com/search_res.cfm%3F&csf=AIA&input_doc_number=NAS410&input_doc_title=&org_code=AIA%2FNAS https://isnt.in https://www.iso.org/standard/57037.html |
dbo:wikiPageID | 255047 (xsd:integer) |
dbo:wikiPageLength | 39023 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1122952547 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:American_Society_for_Nondestructive_Testing dbr:Electromagnetic_acoustic_transducer dbr:Electromagnetic_testing dbr:Electronic_speckle_pattern_interferometry dbr:Endoscope dbr:Optical_microscope dbr:Scanning_electron_microscope dbr:Hydrogen_leak_testing dbr:Lithium-ion_battery dbr:Dye_penetrant_inspection dbr:Industrial_radiography dbr:Infrared_and_thermal_testing dbr:Internal_rotary_inspection_system dbr:Pressure_vessel dbr:Spring_(device) dbr:NMR_spectroscopy dbr:Connecticut dbr:Mass dbr:Medical_imaging dbr:Ellipsometry dbr:Scanning_thermal_microscopy dbr:Terahertz_nondestructive_evaluation dbr:Electrical_engineering dbr:Electromagnetic_radiation dbr:Endoscopy dbr:Engineers dbr:Gamma_rays dbr:Control_system dbr:Magnetic-particle_inspection dbr:Magnetic_flux_leakage dbr:Magnetic_particle_inspection dbr:Magnetic_resonance_imaging dbr:Calibration dbr:Fatigue_(material) dbr:Petroleum_engineering dbr:Pressure_Equipment_Directive dbr:Machine_vision dbr:Magnetovision dbr:Systems_engineering dbr:Technician dbr:Microwave_imaging dbr:Visual_inspection dbc:Maintenance dbr:Dashpot dbr:Welding dbr:Laser_ultrasonics dbr:Leak dbr:Leak_detection dbr:Acceleration dbr:American_Society_of_Mechanical_Engineers dbc:Materials_testing dbr:Echocardiography dbr:Eddy_current dbr:Alternating_current_field_measurement dbr:Fluorescent dbr:Barkhausen_effect dbr:Digital_radiography dbr:Floyd_Firestone dbr:Forensic_engineering dbr:Profilometer dbr:Remote_field_testing dbr:James_F._McNulty_(U.S._radio_engineer) dbr:Hydrostatic_test dbr:Personnel_certification_body dbc:Quality_control dbc:Tests dbr:Acoustic_emission dbr:Acoustic_microscopy dbr:Acoustic_resonance_technology dbc:Materials_science dbc:Nondestructive_testing dbc:Product_certification dbc:Product_testing dbr:Aerospace dbr:Eddy-current_testing dbr:High-speed_camera dbr:Holographic_interferometry dbr:Test_article_(engineering) dbr:X-rays dbr:Displacement_(vector) dbr:Art dbr:Civil_engineering dbr:Guided_wave_testing dbr:Aeronautical_engineering dbr:Neutron_imaging dbr:Optical_coherence_tomography dbr:Optical_interferometry dbr:Radiography dbr:Shearography dbr:Mechanical_engineering dbr:Medicine dbr:Schmidt_hammer dbr:Slow_motion dbr:Sound dbr:Ultrasonic_testing dbr:Near-infrared_spectroscopy dbr:Time-of-flight_ultrasonic_determination_of_3D_elastic_constants dbr:X-ray_generator dbr:Natural_Resources_Canada dbr:Impulse_excitation_technique dbr:Product_lifetime dbr:Thermographic_inspection dbr:Terahertz_time-domain_spectroscopy dbr:Piping dbr:Pipeline_video_inspection dbr:Phased_array_ultrasonics dbr:X-ray_computed_tomography dbr:Photostimulated_luminescence dbr:Radiographic_testing dbr:Water_weights dbr:Tracer-gas_leak_testing_method dbr:Medical_ultrasonography dbr:Liquid-fuel_rocket dbr:Liquid_penetrant_testing dbr:Turbo_machinery dbr:Self-mixing_laser_interferometry dbr:Steam_boiler dbr:Hardness_testing dbr:Industrial_CT_scanning dbr:Wilhelm_Conrad_Röntgen dbr:Specification dbr:Time_of_flight_diffraction_ultrasonics dbr:File:Thorax_pa_peripheres_Bronchialcarcinom_li_OF_markiert.jpg dbr:Absolute_pressure_leak_testing_(pressure_change) dbr:Alternating_current_potential_drop_measurement dbr:Blue_etch_anodize dbr:Direct_current_potential_drop_measurement dbr:File:Replica_system_for_nondestructive_testing.JPG dbr:File:Ressuage_principe_2.svg dbr:File:X-Ray,_Optical_and_Terahertz_image_of_a_packaged_IC.gif dbr:File:Xray_vault.jpg dbr:Surface_temper_etch |
dbp:wikiPageUsesTemplate | dbt:Annotated_link dbt:Authority_control dbt:Cite_book dbt:Cleanup_reorganize dbt:Commons_category-inline dbt:Div_col dbt:Div_col_end dbt:Ordered_list dbt:Refbegin dbt:Refend dbt:Reflist dbt:Short_description dbt:Underwater_diving |
dct:subject | dbc:Maintenance dbc:Materials_testing dbc:Quality_control dbc:Tests dbc:Materials_science dbc:Nondestructive_testing dbc:Product_certification dbc:Product_testing |
gold:hypernym | dbr:Group |
rdf:type | owl:Thing yago:WikicatTests yago:Ability105616246 yago:Abstraction100002137 yago:Cognition100023271 yago:Experiment105798043 yago:HigherCognitiveProcess105770664 yago:Inquiry105797597 yago:Know-how105616786 yago:Method105660268 yago:ProblemSolving105796750 yago:Process105701363 yago:PsychologicalFeature100023100 dbo:Band yago:Thinking105770926 yago:Trial105799212 yago:WikicatEvaluationMethods |
rdfs:comment | الاختبار غير الإتلافي أو الـ«لا إتلافي» أو اختبار غير مدمر أو اختبار غير تدميري (غالباً ما تكون بصيغة الجمع أي اختبارات أو فحوصات) (بالإنجليزية: Nondestructive testing) اختصارًا NDT هو نوع من أنواع الاختبارات في تحليل أسباب انهيار القطع أو من أجل منع حدوث انهيار القطع في المستقبل وذلك بإجراء الاختبار على القطعة دون إتلافها أو إلحاق أضرار بها. (ar) Saiakuntza ez-suntsitzaileak zientzian eta industrian erabiltzen diren saiakuntza teknika multzo bat da; teknika hauen bidez material, pieza edo sistema baten egoera aztertu eta ebaluatu daiteke kalterik eragin gabe, hau da, aztertu nahi den materialaren ezaugarri kimiko, fisiko, mekaniko eta dimentsionalak aldatu gabe. Saiakuntza ez-suntsitzaile metodo erabilienak ultrasoinuak, partikula magnetikoak, , erradiazioak (elektromagnetikoa nahiz partikula azpiatomikoak) eta inspekzio bisuala dira. Saiakuntza ez-suntsitzaileak oso erabiliak dira ingeniaritza mekanikoan (batez ere autogintza industrian eta industria aeronautikoan), ingeniaritza elektrikoan, eraikuntzan, herri-lan ingeniaritzan, ingeniaritza nuklearrean, , medikuntzan eta artelanen kontserbazio eta zaharberritzean. (eu) Le contrôle non destructif (CND) est un ensemble de méthodes qui permettent de caractériser l'état d'intégrité de structures ou de matériaux, sans les dégrader, soit au cours de la production, soit en cours d'utilisation, soit dans le cadre de maintenances. On parle aussi d'essais non destructifs (END) ou d'examens non destructifs. (fr) 非破壊検査(ひはかいけんさ、NDI、英: non destructive inspection、NDT、英: non destructive testing)とは、機械部品や構造物の有害なきず(デント、ニック、スクラッチ、クラック、ボイドなど)を、対象を破壊することなく検出する技術である。対象内へ放射線や超音波などを入射して、を検出したり、表面近くへ電流や磁束を流してを検出する方法に大別される。配管内部の腐食などの検査も非破壊検査に含まれる。 (ja) 비파괴검사(非破壞檢査, 영어: nondestructive testing 또는 evaluation, examination, inspection, NDT 또는 NDE, NDI)는 제조 분야에서 공작물, 부재, 구조물 등을 파괴하지 않고 완전성이나 표면상태, 균열 등을 검사하는 방법이다. 대표적으로 액체침투법, 자기탐상법, 초음파검사법, 음향방사법, 방사선투과법, 와전류탐상법, 열탐상법, 홀로그래피기술등이 있으며 재료의 표면 결함이나 내부 결함을 관찰하는 데 쓰인다. 재료를 파괴하지 않고도 검사할 수 있다는 특성때문에 시간과 돈을 절약하면서 항공기 부품과 같은 고가의 부품을 검사 및 평가(product evaluation)하고 문제를 해결(troubleshooting)하고 연구(research)하는데 주로 사용된다. (ko) Il controllo non distruttivo (CND) si riferisce a un complesso di esami, prove e rilievi, finalizzati alla ricerca e identificazione di difetti di una struttura o materiale, condotti impiegando metodi che non alterano il materiale e non richiedono la distruzione o l'asportazione di campioni dalla struttura in esame. Come abbreviazione si usa spesso la sigla NDT, derivata dall'espressione inglese Non Destructive Testing, o la sigla PND, derivata dall'espressione “prove non distruttive”. (it) Defektoskopia – dział badań nieniszczących zmierzających do wykrycia nieciągłości materiału. Wykrywane są wady materiału takie jak: wtrącenia, ubytki korozyjne, pustki, pęknięcia, odwarstwienia, łuski, szczeliny, braki przetopu itp. (pl) Неразруша́ющий контро́ль (НК) — контроль надёжности основных рабочих свойств и параметров объекта или отдельных его элементов/узлов, не требующий выведения объекта из работы либо его демонтажа. Также существует понятие разрушающего контроля (например, краш-тесты автомобилей). (ru) Неруйнівний контроль (скорочено НК) — контроль властивостей і параметрів об'єкта, не руйнуючи його та при якому не повинна бути порушена придатність об'єкта до використання та експлуатації. (uk) 无损检测(Nondestructive testing,NDT)又称非破坏检验,是在不影响检测对象未来使用功能或现在的运行状态前提下,采用射线、超声、红外、电磁、太赫兹无损检测 等原理技术仪器对材料、零件、设备进行缺陷、化学、物理参数的检测技术。常见的有超声波检测焊缝中的裂纹等方法。中国机械工程学会无损检测学会是中国无损检测学术组织,TC56是其标准化机构。 (zh) Nedestruktivní testování (NDT), nebo také Defektoskopie zahrnuje soubor metod, které jsou na základě měřitelných, nebo sledovatelných fyzikálních jevů schopny odhalit vady ve výrobku bez jeho porušení nebo poškození. Výrobek není při defektoskopické kontrole poškozen, a pokud splňuje požadavky na jakost, je možné jej ihned použít - defektoskopická zkouška probíhá nedestruktivně. Indikace vady při fluorescenční zkoušce magnetickou práškovou metodou. Běžné NDT medody jsou: , , magnetická prášková metoda, , , metoda vířivých proudů, , infračervená defektoskopie. (cs) Se denomina ensayo no destructivo (END; en inglés, NDT, de nondestructive testing) a cualquier tipo de prueba practicada a un material que no altere de forma permanente sus propiedades físicas, químicas, o . Los ensayos no destructivos implican un daño imperceptible o nulo. Los diferentes métodos se basan en la aplicación de fenómenos físicos tales como ondas electromagnéticas, acústicas, elásticas, emisión de partículas subatómicas, capilaridad, absorción y cualquier tipo de prueba que no implique un daño considerable a la muestra examinada.[cita requerida] (es) Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage.The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology.Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. The six most frequently used NDT methods are eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing. NDT is commonly used in forensic engineering, mechanical engineering, petroleum engineering, electrical (en) Pengujian non destruktif (bahasa Inggris: Nondestructive testing) adalah salah satu dari kelompok luas teknik analisis yang digunakan dalam industri sains dan teknologi untuk mengevaluasi sifat-sifat material, komponen, atau sistem tanpa menyebabkan kerusakan. Istilah pemeriksaan tak rusak (NDE), inspeksi tak rusak (NDI), dan evaluasi tak rusak (NDE) juga biasa digunakan untuk menggambarkan teknologi ini. Karena NDT tidak secara permanen mengubah artikel yang sedang diperiksa, ini adalah teknik yang sangat berharga yang dapat menghemat uang dan waktu dalam evaluasi produk, pemecahan masalah, dan penelitian. Enam metode NDT yang paling sering digunakan adalah , , penetran cair, radiografi, ultrasonik, dan visual. (in) Niet-destructief onderzoek (NDO) behelst in de materiaalkunde een aantal onderzoekstechnieken, die bedoeld zijn om de onderzoeker een indruk te geven van de kwaliteit en materiaaleigenschappen van een object of substraat, zonder dit te beschadigen. Een voorbeeld is het nemen van een röntgenfoto. Bij destructief onderzoek (DO) gaat het object verloren, bijvoorbeeld doordat men uitprobeert bij welke uitgeoefende kracht het bestookte object bezwijkt. (nl) Denomina-se ensaio não destrutivo (END ou NDT em inglês nondestructive testing) a qualquer tipo de ensaio praticado a um material que não altere de forma e permanente suas propriedades físicas, químicas, mecânicas ou dimensionais. Os ensaios não destrutivos implicam um dano imperceptível ou nulo. (pt) |
rdfs:label | Nondestructive testing (en) اختبار لاإتلافي (ar) Defektoskopie (cs) Ensayo no destructivo (es) Saiakuntza ez-suntsitzaile (eu) Pengujian non destruktif (in) Contrôle non destructif (fr) Controllo non distruttivo (it) 非破壊検査 (ja) 비파괴 검사 (ko) Niet-destructief onderzoek (nl) Defektoskopia (pl) Ensaio não destrutivo (pt) Неразрушающий контроль (ru) 无损检测 (zh) Неруйнівний контроль (uk) |
owl:sameAs | freebase:Nondestructive testing yago-res:Nondestructive testing http://d-nb.info/gnd/4037934-6 wikidata:Nondestructive testing dbpedia-ar:Nondestructive testing dbpedia-cs:Nondestructive testing dbpedia-da:Nondestructive testing dbpedia-es:Nondestructive testing dbpedia-eu:Nondestructive testing dbpedia-fa:Nondestructive testing dbpedia-fi:Nondestructive testing dbpedia-fr:Nondestructive testing dbpedia-he:Nondestructive testing dbpedia-hr:Nondestructive testing dbpedia-id:Nondestructive testing dbpedia-it:Nondestructive testing dbpedia-ja:Nondestructive testing dbpedia-kk:Nondestructive testing dbpedia-ko:Nondestructive testing dbpedia-ms:Nondestructive testing dbpedia-nl:Nondestructive testing dbpedia-no:Nondestructive testing dbpedia-pl:Nondestructive testing dbpedia-pt:Nondestructive testing dbpedia-ro:Nondestructive testing dbpedia-ru:Nondestructive testing dbpedia-sh:Nondestructive testing http://ta.dbpedia.org/resource/சிதைவுறாச்_சோதனை dbpedia-tr:Nondestructive testing dbpedia-uk:Nondestructive testing dbpedia-vi:Nondestructive testing dbpedia-zh:Nondestructive testing https://global.dbpedia.org/id/4pKou |
prov:wasDerivedFrom | wikipedia-en:Nondestructive_testing?oldid=1122952547&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Replica_system_for_nondestructive_testing.jpg wiki-commons:Special:FilePath/Ressuage_principe_2.svg wiki-commons:Special:FilePath/X-Ray,_Optical_and_Terahertz_image_of_a_packaged_IC.gif wiki-commons:Special:FilePath/Xray_vault.jpg wiki-commons:Special:FilePath/Thorax_pa_peripheres_Bronchialcarcinom_li_OF_markiert.jpg |
foaf:isPrimaryTopicOf | wikipedia-en:Nondestructive_testing |
is dbo:industry of | dbr:Novacam_Technologies |
is dbo:product of | dbr:Giatec_Scientific dbr:Noweco dbr:Oceaneering_International |
is dbo:service of | dbr:Jesse_Garant_Metrology_Center |
is dbo:wikiPageRedirects of | dbr:Non-destructive_analysis dbr:Nondestructive_Examination dbr:Non-Destructive_Analysis dbr:Non-Destructive_Testing dbr:Non-destructive_evaluation dbr:Non_Destructive_Testing dbr:Nondestructive_Evaluation dbr:Nondestructive_evaluation dbr:Nondestructive_test dbr:Nondestructtive_Examination dbr:Non-destructive_testing dbr:Flaw_detection dbr:Portable_non_destructive_concrete_testing |
is dbo:wikiPageWikiLink of | dbr:American_Society_for_Nondestructive_Testing dbr:Proceq dbr:ScanIP dbr:Electrical_resistivity_measurement_of_concrete dbr:Electrochemical_fatigue_crack_sensor dbr:Electromagnetic_acoustic_transducer dbr:Electromagnetic_testing dbr:Electronic_speckle_pattern_interferometry dbr:Endoscope dbr:Engineering_Critical_Assessment dbr:Engineering_physics dbr:Monobloc_engine dbr:NDI dbr:NDT dbr:Non-destructive_analysis dbr:Nondestructive_Examination dbr:Metallurgical_failure_analysis dbr:Metamaterial dbr:Product_lifecycle dbr:Professional_diving dbr:Non-Destructive_Analysis dbr:Non-Destructive_Testing dbr:Non-destructive_evaluation dbr:Non_Destructive_Testing dbr:Nondestructive_Evaluation dbr:Nondestructive_evaluation dbr:Nondestructive_test dbr:Nondestructtive_Examination dbr:Bob_Switzer dbr:Boeing_777 dbr:Day-Glo_Color_Corp. dbr:Applied_science dbr:Hutchinson,_Minnesota dbr:List_of_Georgia_Institute_of_Technology_faculty dbr:DICOM dbr:Ultrasonic_pulse_velocity_test dbr:United_Airlines_Flight_328 dbr:Vinçotte dbr:Destructive_testing dbr:Dye_penetrant_inspection dbr:Infrared_and_thermal_testing dbr:Infrared_non-destructive_testing_of_materials dbr:Inspection dbr:Internal_rotary_inspection_system dbr:Inverse_problem dbr:Inverse_scattering_problem dbr:Pressure_vessel dbr:Soreq_Nuclear_Research_Center dbr:Properties_of_concrete dbr:Novacam_Technologies dbr:Robert_Vinçotte dbr:Medical_ultrasound dbr:Ellipsometry dbr:X-ray_tube dbr:Picea_mariana dbr:Replication_(microscopy) dbr:Terahertz_nondestructive_evaluation dbr:RVmagnetics dbr:Railway_track dbr:Engineering dbr:Fraunhofer_Society dbr:Giatec_Scientific dbr:Mishra_Dhatu_Nigam dbr:Thermography dbr:Equidensitometry dbr:Martensitic_stainless_steel dbr:Leland_D._Melvin dbr:Magnetic_flux_leakage dbr:Magnetic_particle_inspection dbr:Composite_repair dbr:Fatigue_(material) dbr:Piezoelectricity dbr:Pod dbr:Magnetic_induction_tomography dbr:Magnetovision dbr:Michael_Lowe dbr:Micro-spectrophotometry dbr:Austenitic_stainless_steel dbr:Avizo_(software) dbr:C-DAC_Thiruvananthapuram dbr:CTLGroup dbr:Darkroom dbr:Welding dbr:Heat_flux_measurements_of_thermal_insulation dbr:James_H._Williams_Jr. dbr:Lamb_waves dbr:Laser_ultrasonics dbr:Leak dbr:List_of_College_of_William_&_Mary_alumni dbr:Phosphorus_deficiency dbr:Air-Cobot dbr:Air_Weapons_Complex dbr:Amira_(software) dbr:ESR_Technology dbr:Eddy_current dbr:Fleet_Support_Limited dbr:Fluoroscopy dbr:Forensic_firearm_examination dbr:Nico_F._Declercq dbr:Non-destructive_testing dbr:Norilsk_oil_spill dbr:Noweco dbr:Nuclear_technology dbr:Carbon_fiber_testing dbr:Check_weigher dbr:Digital_imaging dbr:Digital_radiography dbr:Failure_analysis dbr:Floyd_Firestone dbr:Fluorescent_penetrant_inspection dbr:Food_Technology_Industrial_Achievement_Award dbr:Germán_Efromovich dbr:Gordon_S._Kino dbr:Handcar dbr:Kinetic_imaging dbr:Leeb_rebound_hardness_test dbr:Proof_test dbr:Remote_field_testing dbr:Remote_visual_inspection dbr:HY-80 dbr:Hale_Interchange dbr:Ionizing_radiation dbr:Isaac_M._Daniel dbr:Testia dbr:Hyperbaric_welding dbr:Smart_intelligent_aircraft_structure dbr:Acoustic_resonance_technology dbr:Acoustical_engineering dbr:Acousto-optics dbr:Chanute_Air_Force_Base dbr:Jesse_Garant_Metrology_Center dbr:Kamensk-Uralsky_Metallurgical_Works dbr:Superiorization dbr:System_testing dbr:Eddy-current_testing dbr:Test_article dbr:Trace_evidence dbr:Tubular_NDT dbr:William_P._Winfree dbr:Testing_of_advanced_thermoplastic_composite_welds dbr:Aviation_safety dbr:Bootstrap_error-adjusted_single-sample_technique dbr:Borescope dbr:Pigging dbr:Piping_and_plumbing_fitting dbr:Ferromagnetism dbr:Free-electron_laser dbr:Ground-penetrating_radar dbr:Guided_wave_testing dbr:IABG dbr:Institute_of_mechanics_and_engineering dbr:National_Institute_of_Advanced_Manufacturing_Technology dbr:Oceaneering_International dbr:Operation_Sandblast dbr:Optical_coherence_tomography dbr:Campus_of_Iowa_State_University dbr:Cascade_chart_(NDI_interval_reliability) dbr:Shamima_K._Choudhury dbr:Shearography dbr:Wire_bonding dbr:Predictive_maintenance dbr:Rivet dbr:Rockwell_scale dbr:Shielded_metal_arc_welding dbr:Sperry_Rail_Service dbr:Shant_Kenderian dbr:Ultrasonic_thickness_measurement dbr:Ultrasound dbr:Ultraviolet dbr:Neutron_microscope dbr:Neutron_tomography dbr:Time-of-flight_diffraction_ultrasonics dbr:ISO/TC_67 dbr:Image-based_meshing dbr:List_of_tests dbr:Low-energy_ion_scattering dbr:Professional_liability_insurance dbr:Waveguide dbr:Plastic_weld_non-destructive_examination dbr:Tracer-gas_leak_testing dbr:Thermographic_inspection dbr:Nanotomography dbr:Multiplex_(sensor) dbr:Picosecond_ultrasonics dbr:Scattering_theory dbr:Weld_quality_assurance dbr:Whispering-gallery_wave dbr:Package_testing dbr:Pad_cratering dbr:TeraView dbr:Phased_array_ultrasonics dbr:Rail_inspection dbr:Outline_of_applied_physics dbr:Outline_of_underwater_diving dbr:Reflectometry dbr:Vidisco dbr:Water_weights dbr:Thermographic_camera dbr:Welder_certification dbr:Southwell_plot dbr:Tutankhamun's_meteoric_iron_dagger dbr:Robert_Charles_McMaster dbr:X-RIS dbr:TUM_School_of_Engineering_and_Design dbr:Thermal_acoustic_imaging dbr:Flaw_detection dbr:Portable_non_destructive_concrete_testing |
is dbp:industry of | dbr:Novacam_Technologies |
is dbp:products of | dbr:Vinçotte dbr:Giatec_Scientific dbr:Noweco |
is foaf:primaryTopic of | wikipedia-en:Nondestructive_testing |