dbo:abstract |
Eine Metzler-Matrix ist eine Matrix, deren Elemente außerhalb der Hauptdiagonalen allesamt nichtnegative Werte besitzen. Namensgeber dieser Matrizen ist der amerikanische Ökonom . Andere Bezeichnungen sind quasipositive Matrix oder wesentlich-nichtnegative Matrix. Metzler-Matrizen treten unter anderem in der Stabilitätsanalyse retardierter Differentialgleichungen und in positiv linearen dynamischen Systemen auf. (de) In mathematics, a Metzler matrix is a matrix in which all the off-diagonal components are nonnegative (equal to or greater than zero): It is named after the American economist Lloyd Metzler. Metzler matrices appear in stability analysis of time delayed differential equations and positive linear dynamical systems. Their properties can be derived by applying the properties of nonnegative matrices to matrices of the form M + aI, where M is a Metzler matrix. (en) 数学の分野におけるメッツラー行列(めっつらーぎょうれつ、英語: Metzler matrix)とは、全ての非対角成分が非負(0 以上)であるような行列のことである。すなわち が成立するような行列 M のことをメッツラー行列という。その名はアメリカの経済学者のロイド・メッツラーにちなむ。 (ja) |
dbo:wikiPageExternalLink |
https://books.google.com/books%3Fid=SkXhBwAAQBAJ&pg=PA102 |
dbo:wikiPageID |
7886457 (xsd:integer) |
dbo:wikiPageLength |
3979 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1081740404 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:M-matrix dbr:Delay_differential_equation dbr:Positive_systems dbr:Mathematics dbr:Matrix_(mathematics) dbr:Matrix_exponential dbr:Eigenvector dbr:Orthant dbr:Linear_algebra dbr:Lloyd_Metzler dbr:London dbr:Stochastic_matrix dbc:Matrices dbr:Linear_dynamical_system dbr:Non-negative dbr:Perron–Frobenius_theorem dbr:Hurwitz_matrix dbr:Z-matrix_(mathematics) dbr:Markov_process dbr:New_York_City dbr:Nonnegative_matrices dbr:Nonnegative_matrix dbr:P-matrix |
dbp:wikiPageUsesTemplate |
dbt:Cite_book dbt:Div_col dbt:Div_col_end dbt:Reflist dbt:Linear-algebra-stub dbt:Matrix_classes |
dcterms:subject |
dbc:Matrices |
rdf:type |
yago:WikicatMatrices yago:Abstraction100002137 yago:Arrangement107938773 yago:Array107939382 yago:Group100031264 yago:Matrix108267640 |
rdfs:comment |
Eine Metzler-Matrix ist eine Matrix, deren Elemente außerhalb der Hauptdiagonalen allesamt nichtnegative Werte besitzen. Namensgeber dieser Matrizen ist der amerikanische Ökonom . Andere Bezeichnungen sind quasipositive Matrix oder wesentlich-nichtnegative Matrix. Metzler-Matrizen treten unter anderem in der Stabilitätsanalyse retardierter Differentialgleichungen und in positiv linearen dynamischen Systemen auf. (de) In mathematics, a Metzler matrix is a matrix in which all the off-diagonal components are nonnegative (equal to or greater than zero): It is named after the American economist Lloyd Metzler. Metzler matrices appear in stability analysis of time delayed differential equations and positive linear dynamical systems. Their properties can be derived by applying the properties of nonnegative matrices to matrices of the form M + aI, where M is a Metzler matrix. (en) 数学の分野におけるメッツラー行列(めっつらーぎょうれつ、英語: Metzler matrix)とは、全ての非対角成分が非負(0 以上)であるような行列のことである。すなわち が成立するような行列 M のことをメッツラー行列という。その名はアメリカの経済学者のロイド・メッツラーにちなむ。 (ja) |
rdfs:label |
Metzler-Matrix (de) Metzler matrix (en) メッツラー行列 (ja) |
owl:sameAs |
freebase:Metzler matrix yago-res:Metzler matrix wikidata:Metzler matrix dbpedia-de:Metzler matrix dbpedia-ja:Metzler matrix dbpedia-sl:Metzler matrix https://global.dbpedia.org/id/4n3eV |
prov:wasDerivedFrom |
wikipedia-en:Metzler_matrix?oldid=1081740404&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Metzler_matrix |
is dbo:wikiPageRedirects of |
dbr:Quasipositive_matrix |
is dbo:wikiPageWikiLink of |
dbr:M-matrix dbr:L-matrix dbr:List_of_named_matrices dbr:Positive_systems dbr:Lloyd_Metzler dbr:Gershgorin_circle_theorem dbr:Perron–Frobenius_theorem dbr:Z-matrix_(mathematics) dbr:Nonnegative_matrix dbr:Stieltjes_matrix dbr:Quasipositive_matrix |
is foaf:primaryTopic of |
wikipedia-en:Metzler_matrix |